
Symbolic trajectory description in mobile robotics

Gilbert Pradel (gpradel@lsc.univ-evry.fr)
Laboratoire Systèmes Complexes,
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Abstract. Autonomous mobile robot navigation systems are based on three prin-
cipal kinds of techniques: map-based navigation, map-building-based navigation
and mapless navigation. We propose a method for symbolic trajectory description
in unknown indoor environments. The chosen form uses a panoramic description
called fresco. The method uses distance measurements from a 2D laser range finder,
digitises the robot’s visibility area, eliminates superfluous data and reorients their
presentation. The landmarks are then extracted and organised into the fresco which
is validated by means of neighbourhood rules. As the robot moves in the environ-
ment, the frescoes are created and both the amount of new information a fresco
carries out and its position in relation to the preceding ones are evaluated by means
of two criteria. Only frescoes selected as enough informative are stored to describe
the robot’s route.

Keywords: Autonomous mobile robot, environment symbolic description, symbolic
navigation
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2 G. Pradel

1. Introduction

One main issue for mobile robots is their capacity to go from one point
to another autonomously. It is based on three concepts: i) planning
which computes a trajectory between the two points, ii) navigation
which gives motion orders to the robot to follow the computed tra-
jectory and iii) environment representation which permits the robot
to know if it goes in the right direction. Works presented here are
interested in point iii). We want to define an open method to solve
the human-like problem of the high level description of a travel in a
structured environment by a mobile robot. Many works are conducted
in the neurosciences domain to better understand the mental moving
process of human beings. Without considering the motivation of the
move, a mental scheme is built before and during the move mainly
based on visual landmarks and on acoustic stimuli. An anticipation
phenomenon, guided by his(her) own perspectives, is also made by a
human being.

The application field of our work is a middle-cost mobile robot that
is sent in an apartment to do works for, for example, a physically
handicapped person. Hence, the environment is of a structured indoor
type. The robot is intended to supply services while other people are
not in time to do them: the disabled person is alone in its appartment,
nurse or relatives are absent. . . The environment is therefore considered
as static and unknown because objects can have been moved. At this
point, the problem is two-fold. Firstly, through the Human-Machine
Interface (HMI), the mission must be entered and its development must
be explained to the user. Secondly, the robot has to be programmed to
execute the mission. Building a description of the travel as close as a
human could do it has at least two advantages. This description, on one
hand, is requested by the HMI between the robot and the handicapped
person and, on the other hand, at the execution level, it can be a way to
take into account the stumbling blocks highlighted by the conventional
navigation systems. Wheel slippage, localisation error introduced by
integration of data from wheel encoders, drift of inertial systems are
three examples among others. Finally, beacons could be deployed in
the environment with known locations but the works described in this
paper consider not engineered environments.

As the environment in which the robot will travel is known, it seems
not necessary to use simultaneous localisation and mapping (SLAM)
methods introduced by Leonard and Durrant-Whyte (Leonard and
Durrant-Whyte, 1991) and (Smith and Leonard, 1997). Nevertheless,
we believe that it is possible to associate the topological and geometric
structure of an environment and its symbolic description. Kuipers (Kuipers
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3

and Byan, 1991) defined symbols as distinct places situated at equal
distances from the nearby obstacles. Connections between these places
link symbols and represent free path (Choset and Nagatani, 2001).
Figure 1 shows the Voronoii graph of an environment. In this figure,
the labelled vertices represent the symbols while edges connecting the
symbols are the path the robot can use.
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Figure 1.: Voronoii diagram whith numbers label symbols

Sensor
Symbolic

Description

Builder

Pertinence

Evaluation

Symbolic

Comparator
Description
Symbolic

Saver

Environment
Symbolic descriptions

Voronoii vertices
corresponding to

Voronoii
Graph

Builder
Environment

Description
Symbolic

Saver

Symbolic
Description

Builder

Moving process
Robot

Navigator

Simulator

Mental moving process

Figure 2.: System architecture overview

Our works aim at building a symbolic description of the trajec-
tory based on the Voronoii’s graph vertices. The system architecture
overview is given in figure 2. It includes the moving process block that
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4 G. Pradel

simulates the mental process by which a human being foresees a move
in an environment. Assuming that the real environment is known, the
Voronoii diagram is built by the Voronoii Graph Builder and for all
the vertices situated on the robot’s route, a symbolic description of the
environment is made by the Symbolic Description Builder and saved.
The set of these descriptions constitutes a high level description of the
robot’s route that will be used by the robot to symbolically localise in
the environment. When the real robot is launched in the environment
on a trajectory, a symbolic description is built from the sensor raw data
every time a measurement is made. Their pertinence is evaluated and
compared with the mental process output to drive the navigator.

Thus, the problem is building the symbolic description of the route
followed by the robot. In fact, the question is three-fold: how to build
the qualitative descriptions in accordance with the robot’s sensors, how
to describe the route by a sequence of the most pertinent descriptions
and how to use these descriptions with the control-command level
of the robot. The symbolic builder architecture is fully developped
in (Pradel and al., 2000). This paper is focussed on the evaluation
of what new information is brought up by a new symbolic descrip-
tion. Since the approach is mainly qualitative, we do not need precise
scalar quantities to denote the position of a landmark insofar the robot
does not hit it. We choose to describe the surrounding environment
by means of landmarks such as ”Opening, Closure, End of Closure,
Angle of Closures,...” organised into ordered series called frescoes ac-
cording to the data delivered by the sensors. These landmarks are
the most perceivable (consistent) and the most easily distinguishable
(distinctive) whatever the sensor used. One immediately thinks to the
memorisation of the frescoes describing the parts of the environments
that the robot chronologically covers during a journey leading to the
symbolic description of the trajectory.

2. Related works

Related works can be found in the fields of Image Based Navigation
systems, shape understanding using sensor data, vision based homing.
Vision for mobile robot navigation did have specific development during
the last twenty years. (DeSouza and Kak, 2002) gives a complete survey
of the different approaches. For indoor navigation, systems are classi-
fied in three groups: map-based navigation using predefined geometric
and/or topological models, map-building-based navigation construct-
ing by themeselves geometric and/or topological models, and mapless
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navigation using only object recognition and actions associated to these
objects (Gaussier and al., 1997).

In Image Based Navigation systems, several great classes of sys-
tems can be identified from the literature. The first one uses con-
ventional telemeters and vision to find and identify objects in the
environment (Wichert, 1996). The second one is the class of the systems
coupling more or less directly sensor data to motor control thanks to
a supervised learning process. Among them neural networks systems
used as classifiers are noticeable. These systems begin to classify the
environment into global classes such as ”corridor, corner, room, crossing
...” (Al Allan, 1996) (Pomerleau, 1993) are often followed by a second
processing unit that outputs a navigation command. In addition to
restrictions related to the supervised learning, these classes give only a
global description and are of least interest in cluttered and complex
environments. The third class includes the systems which compare
current sensor data and predefined models both at a low level (edges,
planes ...) (Kim and Neviata, 1994) and at a high level (door, room,
object ...). These systems use mainly vision sensors (cameras) that
provide a huge amount of data that must be reduced to be processed
in real time. The elements extracted from the data are compared to
reference models known a priori. The fourth class evoked here includes
the systems trying to geometrically build environment models before
deciding an optimised path plan (Crosnier, 1999).

In the field of shape understanding using sensor data, environment
interpretation stresses the use of natural landmarks to ease the naviga-
tion and the pose estimation of a mobile robot. Among other works, one
can pinpoint (Simhon and Dudek, 1998) which is interested in defining
islands of reliability for exploration. He proposes strategies to couple
navigation and sensing algorithms through hybrid topological metric
maps. (Oore and al., 1997) considers the problem of locating a robot
in an initially unfamiliar environment from visual input. In the same
way, (MacKenzie and Dudek, 1994) involves a methodology to bind
raw noisy sensor data to a map of object models and an abstract map
made of discrete places of interest.

Several implementations of vision based homing systems are pre-
sented in (Franz and al., 1997). A method aiming at highlighting salient
features, as for example landmarks, between these two views and deriv-
ing a decision is used in (Hong, 1991). In these works, a homing system
extracts landmarks from the view and allows a robot to move to home
location using sequence target locations situated en route between its
current location and home. Other works are biologically inspired. (Judd
and Collett, 1998) showed that ants store series of snapshots at different
distances from their goal to use them for navigating during subsequent
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journeys. Judd and Collett experimented their theory with a mobile
robot navigating through a corridor, homing successive target loca-
tions. (Weber and al, 1999) proposes an approach using the bearings
of the features extracted of the panoramic view leading to a robust
homing algorithm. This algorithm pairs two landmarks situated into
two snapshots to derive the homing direction. The bearings pairing
process uses a list of preferences similar to neighbourhood rules.

Symbolic processing methods are described in Tedder’s works (Ted-
der and Hall, 2001). This formal approach is often called structural
or syntactic description and recognition. The general method for per-
ception and interpretation proposes to symbolically represent and ma-
nipulate data in a mapping process. (Tedder and Hall, 2001) solve the
problem in modelling the 3D environment as symbolic data and in
processing all data input on this symbolic level. The results of obstacle
detection and avoidance experiments demonstrate that the robot can
successfully navigate the obstacle course using symbolic processing con-
trol. These works use a laser range finder. A way for defining suitable
landmarks from an enviuronment as the robot travels is a research
problem pointed out by Fleisher and al. in (Fleisher and al., 2003).
An automatic landmark selection algorithm chooses as landmarks any
places where a trained sensory anticipation model makes poor predic-
tions. The landmark detection system consists of a sensory anticipation
network and a method of detecting when the difference between the
prediction of the next sensor values and the current measured values
can reveal the presence of a landmark. This model has been applied
to the navigation of a mobile robot. An evaluation has been made
according to how well landmarks align between different runs on the
same route. These works show that the robot is able to navigate reliably
using only odometric and landmark category information.

In (Lamon and al., 2001), a method is proposed for creating unique
identifiers called fingerprint sequences for visually distinct significant
features in panoramic images. This localisation system proves that the
actual position of a robot in an environment can be recovered by con-
structing a fingerprint sequence and comparing it wit a database of
known fingerprints.

The proposed work goes on the way proposed by (Tedder and Hall,
2001) and (Lamon and al., 2001). According to these works, our contri-
bution applies mainly on a method to extract clues of interest among
raw distance data delivered by a 2D panoramic laser range finder in-
stalled on the robot. These clues of interest, i.e. the landmarks, are
gathered in a sequence that we call a fresco. We consider that the
trajectory of the robot can be described by the set of the frescoes. To
do that, we have to select the frescoes that bring new information. The
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originality of this work stays in the simple but efficient criteria used for
the construction and the validation of the fresco baut mainly to select
the most pertinent frescoes along the route of the robot. In addition to
this qualitative approach, one must consider that the system will have
to be embarked on a vehicle, which vibrates, runs at variable speeds on a
non-uniform ground. This leads to constraints of speed, size, robustness,
compactness and cost, implying various choices both at the design and
at the development levels of the system. The methods used have been
chosen as simple as possible to reduce the cost and the complexity
of the processing. Nevertheless the method must be robust compared
with the robot movements, the sensor accuracy and the variations of
the complexity of the environment.

The paper firstly presents the landmarks used (section 3 and the
criteria used to select the relevant frescoes (sections 3.1 and 3.2). Sec-
tion 4 briefly explains the fresco construction (section 4.1). Section 4.2
shows and discusses the experimental results in simple environment
and section 4.3 examplifies the behaviour of the system in a complex
environment. We conclude with ways to improve the method.

3. Criteria used to detect relevant changes in the
environment evaluation

As told in the introduction, environments are described using a fresco
made of ordered series of landmarks. An example of fresco is given in
figure 4f. The robot is situated in the middle of the environment. The
environment is divided in four quadrants. In each quadrant appears a
variable number of landmarks. The set of landmarks is shown in table 3.

To each landmark are associated three qualitative attributes rep-
resenting three properties of landmarks. The off-sight attribute is set
when the landmark stands close to or beyond the end of the sensor
range. The position attribute can take the following values: crosswise,
diagonal or lengthwise according its position related to the lenghtwise
and crosswise robot axis. The certainty attribute is introduced to take
into account landmarks whose evolution can be forecast. It is false for
every landmark (for instance, diagonal ”End of Closure”, ”45o angles”)
that could come from a possible noise introduced in the digitisation
process and whose evolution cannot be known.

Every time the laser range finder scans the environment, a fresco
is built. In our case, the fresco built-in period is 300ms. Hence, if all
frescoes are stored, one, their number grows quickly and, second, some
of them are not useful. Storing all the frescoes when the robot runs in
a corridor is a trivial example. All frescoes are very similar excepted
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Table I. Landmark language used in the fresco construction

Symbol Landmark Position Off-sight Certainty

Angle of Closure true

End of Closure lengthwise true

End of Closure lengthwise off sight false

End of Closure crosswise true

End of Closure crosswise off sight false

End of Closure diagonal1 false

End of Closure diagonal1 off sight false

End of Closure diagonal2 false

End of Closure diagonal2 off sight false

45oAngle lengthwise false

45oAngle crosswise false

Opening lengthwise true

Breakthrough lengthwise true

15 Opening crosswise true

Breakthrough crosswise true

at both ends. If only few frescoes are useful, how then is it possible to
select them? Is a specific sequence of frescoes able to describe a part
of the environment? Answering, at least partially, to these questions is
the aim of this paper. Two criteria, called barycentre and resemblance,
are proposed to evaluate a kind of distance between frescoes. A new
fresco is kept only if its distance to the previous stored one regarding
one of the criteria is greater than a threshold. The two next sections
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describe these criteria. A systematic study gives an evaluation of the
thresholds to use to make the criteria effective.

3.1. Resemblance evaluation between two frescoes

This criterion uses a nearby principle of that presented in (Hong, 1991).
A correlation function allows to calculate the resemblance between two
frescoes. This criterion has been tested in the same environment as
that used for the construction and the validation of the frescoes. The
use of this criterion shows that the landmarks that are not certain
make very difficult the evaluation of the resemblance so only the certain
elements were kept. The resemblance between two consecutive frescoes
is calculated by taking into account the difference between the number
of certain landmarks in the respective quadrants of two consecutive
frescoes. The comparison of this difference with a reference thresh-
old indicates if the current fresco should be kept or rejected because
not bringing enough information. The algorithm used to compute the
resemblance is (Algorithm 1):

Function Resemblance( Fi,Fj : fresco) : pertinent : boolean

Compute Ni[0], Ni[1], Ni[2], Ni[3]

the number of certain landmarks in quadrants

0, 1, 2, 3 respectively in fresco Fi;

Compute Nj [0], Nj [1],Nj [2],Nj [3]

the number of certain landmarks in quadrants

0, 1, 2, 3 respectively in fresco Fj ;

Compute the resemblance between frescoes Fi and Fj :

rij = |N0i −N0j |+ |N1i −N1j |
+|N2i −N2j |+ |N3i −N3j |;

End

Algorithm 1: Resemblance algorithm

3.2. Barycentre evaluation between two frescoes

This criterion is inspired by the distance of Hausdorff which measures
the distance between two sets (Ahuactzin and al., 1995) and (Hut-
tenlocher, Klanderman and al., 1993). In our case, this notion was
very simplified to respect real-time constraints. It takes into account
only the number of certain landmarks in every quadrant. This num-
ber of landmarks was positioned as indicated on the figure 3 and the
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barycenter was positioned. Any variation of the number of elements in
a quadran implies a movement of the barycenter. If this displacement
is superior to an experimentally fixed value, the fresco is considered as
bringing up new relevant information. The algorithm used to compute
the barycenter is (Algorithm 2):

N1

N2

N3

N0

N1: number of certain landmarks in quadrant1
N2: number of certain landmarks in quadrant2
N3: number of certain landmarks in quadrant3

N0: number of certain landmarks in quadrant0

quadrant0quadrant1

quadrant2

position
barycenter

quadrant3

x

y

Figure 3.: Certain landmarks barycenter calculation
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Function Barycentre( Fi, Fj : fresco) : pertinent : boolean

Compute Ni[0], Ni[1], Ni[2], Ni[3]

the number of certain landmarks in quadrants

0, 1, 2, 3 respectively in fresco Fi;

Compute Nj [0], Nj [1], Nj [2], Nj [3]

the number of certain landmarks in quadrants

0, 1, 2, 3 respectively in fresco Fj ;

Compute the number of certain landmarks

in every quadrants and the total number of certain

landmarks in frescoes Fi and Fj ;

Compute the barycenter between frescoFi

and fresco Fj :

xref = Ni[0]−Ni[2]
Ntoti

; yref = Ni[1]−Ni[3]
Ntoti

;

x =
Nj [0]−Nj [2]

Ntotj
; y =

Nj [1]−Nj [3]
Ntotj

;

baryij =
√

(xref − x)2 − (yref − y)2;

If (baryij ≥ threshold) then

return pertinent=True;
else

return pertinent=False;
end If

End

Algorithm 2: Barycenter algorithm

3.3. Route symbolic description

The symbolic trajectory description is made by the storage of the per-
tinent frescoes detected by either resemblance or barycentre criteria.
These frescoes can be stored in a FIFO or in a LIFO depending the
future use. A LIFO arrangement could be more useful if the robot
has to return to its starting point. In that case, the last fresco pushed
onto the top of the LIFO is the first fresco the robot will encounter at
the beginning of the return part of the trajectory. Generation of the
symbolic trajectory uses the following algorithm 3:
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Function SymbolicTrajectory() :

Fi, Fj : fresco

i : integer

Create a fresco from sensory data

Fi=Create fresco(sensory data);

Store the 1st fresco in the LIFO

Push Fresco(Fi);

While (!End trajectory) do

The robot moves and another fresco can be built

Create a fresco from sensory data

done
Fj=Create fresco(sensory data);

If (criteria(Fi,Fj) == True) then

Push Fresco(FJ );
end If
Fi=Fj ;

End

Algorithm 3: Symbolic trajectory algorithm

4. Experimental results

4.1. Symbolic description

To build the fresco, the ”Opening, Closure, End of Closure, Angle of Closures”
landmarks have to be extracted from the raw distance data given
by the panoramic laser range finder. Three steps are necessary. The
first one consists of environment perception. It is realised with a laser
range finder. The second step builds the digital representation of the
environment. The third one extracts the landmarks. More details can
be found in (Pradel and al., 2000). The size of the non holonomous
robot is (width x length) 0.50m x 0.75m. Its linear and angular speeds
are up to 1m/s and 2.45rad/s. The robot is placed at the geometrical
centre of the environment captured bt the panoramic telemeter. Sizes
of the environment are 6m x 6m. Experiments in the following have
been made with measurements coming from both a simulated laser
range finder and the real telemeter. Figure 4 examplifies the symbolic
description process. Figure 4a shows the environment detected by the
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sensor. When the laser beam hits an obstacle the corresponding cell
will appear in black in the cellular space. Elimination of the noise intro-
duced by the oblique walls needs a reorientation and a filtering process
(figures 4b and 4c) (Bras and al., 1995). Extraction of the landmarks
(”End of Closure”, ”Closure” and ”Angle of Closures”) from the grid is
made by a set of laws similar to those used in cellular automata (Pradel
and al., 2000). Figures 4d and 4e examplify the landmark extraction
process for the ”Angle of Closures” and ”End of Closure” landmarks.
Finally, figure 4f shows the corresponding fresco.

a(upper left): real world from raw measurements,
b(upper centre): reoriented cellular space,
c(upper right): refined space after superfluous data elimination,
d(lower left): Angles of Closure extraction,
e(lower centre): End of Closure extraction,
f(lower right): Constructed fresco.

Figure 4.: Example of the digitised constructions:

Building the fresco uses the language presented in table 3 which
gathers landmarks identity and attributes. This operation aims mainly
at eliminating the notion of distance to the profit of a spatial series
and highlights the qualitative representation of the environment. Every
time a fresco is built, a validation checking is made thanks to strict laws
of neighbourhood (for example, the neighbours of an Angle of Closure
can only be Angle of Closures or End of Closures) and either the fresco
is saved or lost with only slight effects on the mission of the robot.
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Moreover, the disturbance introduced by this loss is very attenuated
because the process of transitions detection and environment memori-
sation eliminates a great part of the frescoes. When it is validated, the
fresco appears as shown in figure 4f. A fresco will contain at most 64
landmarks symbols. At this point, a certainty attribute is introduced to
reflect the evolution of the landmarks when the robot is moving. This
evolution is well defined for the certain landmarks while it is not for
the other ones (e.g.: an End of closure off-sight can transform in itself
or End of closure or Angle).

4.2. Application of the criteria in simple environment

The two criteria apply only on the certain landmarks and have been
tested in two types of environments. In a first step, experiments in
simple environments led us to point out the thresholds relevant ranges.
In a second step, a complex environment has been used to validate
these thresholds.

The problem is to find the right threshold for each criterion. A
representative panel of situations is first established and systematic
tests are made on each situation in which the frescoes are listed for
different thresholds of the two criteria. Then a reference threshold for
each criterion is fixed taking into account firstly the ratio of kept fres-
coes and secondly the position of these frescoes with respect to their
situation along the robot’s route in the considered environment. Finally,
thresholds that have been defined are tested in a complex environment.

4.2.1. Choice of different types of environment
Indoor environments can be described using a limited number of situa-
tions (Al Allan, 1996): openings, walls, angles, room, corridor, dead-end
and crossings. So far, tested situations are listed in table 4.2.1.

Figure 5 shows the example of the ”opening on the left situation”.
Numbers on the left of the figure show the different positions where
frescoes have been constructed. In this example, frescoes are built from
position 1 to position 31 (only one of five is drawn to make the figure
readable).
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Figure 5.: Example of situation: Opening on the left

In the different situations, the initial numbers of frescoes are different
(Table 4.2.1).

Table II. Initial number of built frescoes

Situation Abbrev. Number of frescoes

Angle to the left AL 31

Angle to the right AR 31

Opening on the left OL 31

Opening on the right OR 31

X-crossing CX 42

4.2.2. Number of pertinent frescoes vs. criterion
It is firstly interesting to observe the number of frescoes kept for dif-
ferent values of thresholds. For barycenter criterion, values between 0
and 2 with a step of 0.05 are tested. For resemblance criterion, values
between 0 and 12 with a step of 0.5 are tested. Beyond these limits, only
fresco number one is kept. As the initial number of frescoes is different
in all situations, the ratio between the number of frescoes kept and
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the initial number of frescoes is analysed. Figure 6 shows the results
for resemblance criterion. Figure 7 shows the results for barycenter
criterion. It can be seen that curves in each figure are similar, meaning
that criteria have the same response in all the environment situations.
It seems then possible to find a common threshold.

AR/AL: angle on the right/left,
CX: X-crossing,
LA: lab,
OR/OL opening on the right/left,
Sum: add up.

Figure 6.: Percentage of frescoes selected by resemblance criterion vs.
threshold value
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AR/AL: angle on the right/left,
CX: X-crossing,
LA: lab,
OR/OL opening on the right/left,
Sum: add up.

Figure 7.: Percentage of frescoes selected by barycenter criterion vs.
threshold value

It also can be noted that curves fall quickly for low thresholds val-
ues. In figure 5, frescoes between 1 and 10 represent the same part
of the environment with very slight differences. The objective is to
keep a reasonable part of frescoes between 10% and 20% in the first
approximation. For resemblance criterion, that means thresholds values
between 5 and 7 and between 0.4 to 0.6 for barycenter criterion.

4.2.3. Positions of pertinent frescoes
For both criteria, it is interesting to visualise which frescoes are con-
sidered as pertinent. For the barycenter criterion applied to the ”angle
on the left” situation, figures 8, 9, 10, 11 and 12 show the positions of
the pertinent frescoes vs. the threshold value.
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Figure 8.: Pertinent frescoes vs barycenter criterion; threshold=0.40

Figure 9.: Pertinent frescoes vs barycenter criterion; threshold=0.45.
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Figure 10.: Pertinent frescoes vs barycenter criterion; threshold=0.50
(AL situation).

Figure 11.: Pertinent frescoes vs barycenter criterion; threshold=0.55
(AL situation).
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20 G. Pradel

Figure 12.: Pertinent frescoes vs barycenter criterion; threshold=0.60
(AL situation).

Frescos number 1 and 31 represent the beginning and the end of the
trajectory: they appear for all the thresholds. Frescoes 9, 11, 13 and
24 represent the heart of the turning. They are very close considering
Euclidean distance but they differ in term of orientation. Fresco number
24 disappears for thresholds equal to 0.55 or 0.60. The value 0.50 is
the central threshold value for barycenter criterion. A similar analy-
sis has been conducted for all other situations. In the same way, the
resemblance criterion leads to the same conclusion with 6.0 as central
threshold.

4.2.4. Discussion
If only the number of the frescoes considered as pertinent to describe
the travel of the robot is taken into account, we firstly see that the
response for each criterion is similar for every situations and, secondly,
that for every criterion the thresholds values giving the best results
are very close. It is then possible to evaluate an acceptable threshold
whatever the situation. This number is not significant of the efficiency
of the criteria. The position of selected frescoes plays an important role.
The pertinent frescoes must be positionned as close as possible of the
labels of the Voronoii vertices. The visualisation of the selected frescoes
for all the combinations of situations and criteria shows that retained
frescoes are well situated in the environment to have a satisfying rep-
resentation. Figures 13 and 14 show the positions of pertinent frescoes
vs. the criterion used. Resemblance criterion keeps 3 frescoes situated
before the opening, in the middle of the opening and after the opening.
It is the best representation of the changes in the environment in terms
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of concision and precision. In other situations, the barycenter criterion
gives the best result.

Figure 13.: Position of pertinent frescoes with barycenter criteria (AL
situation).

Figure 14.: Position of kept frescoes with resemblance criteria (AL
situation).
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4.3. Complex environments

Figure 15.: Comparison of percentage of frescoes selected by resem-
blance criterion in complex (LA) and simple environments vs threshold.

Figure 16.: Comparison of percentage of frescoes selected by barycen-
ter criterion in complex (LA) and simple environments vs threshold.

A complete trajectory has been studied in a complex environment
(figure 17). The two criteria have been applied. The variations of the
thresholds have been limited to the range determined by the tests
in simple environments: 5 to 7 for resemblance and 0.4 to 0.6 for
barycenter. Figures 15 and 16 show the percentage of kept frescoes for
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Figure 17.: Test environment: the lab

both criteria. For barycenter criterion, there is no significant difference
between the complex and the simple environments. For resemblance
criterion, the ratio is greater in the complex environment than in the
simple ones. Nevertheless, for a threshold equal to 7.0, the ratio be-
comes close to the ratio obtained in simple environments. Figure 18
shows pertinent frescoes for the resemblance criterion with a threshold
equal to 7.0. Figure 19 shows pertinent frescoes for the barycenter
criterion with a threshold equal to 0.4.
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Figure 18.: Position of pertinent frescoes with resemblance criterion
in the complex environment.

Figure 19.: Position of pertinent frescoes with barycenter criterion in
the complex environment.
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5. Conclusion and perpectives

Human beings, as well as insects (Collett and al., 1992), use resem-
blance (or dissimilarity) to compare views of the environment rejecting
those that do not bring up new elements without using metrics, only us-
ing the occurence of landmarks. In this paper, we present a qualitative
method inspired of homing methods (Weber and al, 1999) to con-
struct the environment surrounding an indoor mobile robot equipped
with a 2D telemetry sensor. Every times distance measurements are
made, landmarks are extracted and organised into series called frescoes.
From this point, distance information are not more used. In order to
derive the pertinent frescoes that can describe the trajectory of the
robot, we plan to use a pairing-like method. The first criterion that
is primarily being investigated uses a resemblance between two fres-
coes. The landmarks are bounded and a correlation function measures
the difference between consecutives frescoes. The second criterion is
based on the difference between the barycentre positions of consecu-
tive frescoes(Huttenlocher, Klanderman and al., 1993). Those frescoes
separated by a difference higher than a threshold are considered as
pertinent to describe the robot’s route. In both cases the differences
are compared with thresholds that are experimentally set up. Despite
the criteria simplicity, the results in the very changing test environment
(figure 17) show that the thresholds experimentally trimmed in simple
environments are well fitted to a complex environment.

Depending the environment, it has to be noticed that the behaviour
of the two criteria can differ and one can be a bit more efficient than the
other. An improvement of the method will introduce a global informa-
tion situation in the choice of the best criterion. A neural classifier will
output the class of the situation of environment. According this class,
the most efficient criteria, resemblance or barycentre, will be chosen.
Another direction should be the use of more sophisticated criteria such
as, for example, Lievenshtein distance. A good evaluation of the criteria
could be their use in a return journey. Remember that the application
field of the robot is supplying services for a handicapped person. The
robot has to go in the flat and move back to the user. If it is able to go
back to its starting point, we do consider that the method is validated.
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