
Average consensusand stability analysis

in networkeddynamic systems

Naim Zoghlami a, Lotfi Beji b, Rhouma Mlayeh c, Azgal Abichou d

aUniversity of Evry, IBISC-EA 4526, 40 rue du Pelvoux, 91020 Evry, France
& LIM Laboratory, Polytechnic School of Tunisia, BP743, 2078 La Marsa, Tunisia

bUniversity of Evry, IBISC-EA 4526, 40 rue du Pelvoux, 91020 Evry, France

cPolytechnic school of Tunisia, LIM Laboratory, BP743, 2078 La Marsa, Tunisia

dPolytechnic school of Tunisia, LIM Laboratory, BP743, 2078 La Marsa, Tunisia

Abstract

This paper provides protocols for finite-time average consensus and finite-time stability of systems with controlled nonlinear
dynamics in network under undirected fixed topology. Each node’s state is a high dimensional vector as a solution of highly
nonlinear first-order dynamics with and without drift terms. Under the proposed interaction rules, agreements as a common
average value or an average trajectory are reached, solving finite-time average consensus and the multi-system equilibrium
is controlled leading to the finite-time stability of each system origin. Sufficient conditions are achieved using the Lyapunov
techniques and the graph theory. In networked dynamic systems, the theoretical results of the paper cover a large class of
underactuated autonomous systems as formation flight, multi-vehicle coordination and heterogenous multi-system behaviors.
Some examples are introduced in simulation which approve the proposed protocols.
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1 Introduction

For cooperative tasks using multi-agent groups, the
presence of a large number of autonomous dynamical
systems in industry requires interrelationships between
distributed control parameters which are designed at a
first step to manage each agent separately. Thus, in co-
ordination of a team of autonomous agents, the commu-
nication of sensors is fundamental in many distributed
control systems. For many applications the main chal-
lenges in cooperative design for a group of agents is to
meet some objectives such that the rendezvous problem
of multi-vehicle, control of training, flocking, attitude
synchronization and the fusion of sensors. A coher-
ent movement in masses is called consensus. Thus, the
problem of consensus plays a central role in study of
multi-agent systems. In recent years this paradigm has
introduced in multi-agent systems witnessed dramatic
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advances of various distributed strategies that achieve
agreements. In [Vicsek, 1995] the authors proposed
a simple but interesting discrete-time model of finite
agents all moving in the plane. Each agent’s motion is
updated using a local rule based on its own state and the
states of its neighbors. Jadbabaie et al. [Jadabaie, 2003]
provided a theoretical explanation of the consensus
property of the Vicsek model by using graph theory and
nonnegative matrix theory. For this model each agent’s
set of neighbors changes with time as system evolves.
Consequently, many seemingly different problems that
involve inter-connection of dynamic systems in various
areas of science and engineering happen to be closely
related to consensus problems for multi-agent systems.
The existing connections are presented by Olfati-Saber
in [Olfati-Saber, 2007] with application to linear dynam-
ics in network in studying of multi-system behaviors.
The theoretical framework for posing and solving
consensus problems for networked dynamic sys-
tems was introduced by Olfati-Saber and Murray in
[Olfati-Saber, 2003] and [Olfati-Saber, 2004] (builded
on Fax’s works [Fax, 2001] [Fax, 2004]). Under dy-
namically changing interaction topologies, Ren and
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Beard [Ren, 2005] extended the results of Jadbabaie
[Jadabaie, 2003].
Various finite-time stabilizing control laws have been
proposed using continuous state feedback and output
feedback controllers Bhat et al. [Bhat, 2000]. Further-
more, the finite-time control design has been extended
to nth order systems with both parametric and dynamic
uncertainties [Hong, 2006]. Although the finite-time de-
sign is generally more difficult than the asymptotically
stabilizing control due to the lack of effective analysis
tools. Also, the non-smooth finite-time control synthe-
sis can improve the system behaviors in some aspects
like high-speed, control accuracy, and disturbance- re-
jection. Therefore, it is not surprising that finite-time
control ideas have been applied to multi-agent systems
with first-order agent dynamics using gradient flow and
Lyapunov function [Cortes, 2006]-[Xiao, 2006].
Finite-time consensus firstly was studied by Cortes
[Cortes, 2006], where a non-smooth consensus algo-
rithm is proposed. In the same filed [Hui, 2008], and in
[Xiao, 2009] authors proposed a continuous nonlinear
consensus algorithm to guarantee the finite-time stabil-
ity under an undirected fixed interaction graph. Wang
and Xiao in [Wang, 2010] suggest an improvement to the
proposed algorithm proposed in [Hui, 2008]. The new
algorithm proposed in [Wang, 2010] is able to guaran-
tee finite-time consensus under an undirected switching
interaction and a directed fixed interaction graph when
each strongly connected component of the topology is
detail-balanced. In [Yougcan, 2011], the authors study
finite-time consensus for second order dynamics with
inherent nonlinear dynamics under an undirected fixed
interaction graph.
In networked dynamic systems, finite-time consen-
sus problems that have been solved so far are mostly
only for simple agents like particle behaviors as first
or second order dynamics. In [Zoghlami, 2013] and
[Zoghlami, 2014], the authors treated finite-time con-
sensus for highly nonlinear dynamic systems in network
affine in control inputs. Such a system is described by a
nonlinear first-order ordinary differential relations.
While an interesting topic in consensus problem is
the average consensus problem such that the states
of all the agents converge asymptotically or in fi-
nite time to the average of their initial states under
a networked interaction protocol, one cites the re-
sults in [Zhu, 2010] [Fangcui, 2011] [Shahram, 2012]
[Shuai, 2013] [Liu, 2007], our work consists to extend
these results and propose protocols for nonlinear dy-
namic systems in network expected to reach an agree-
ment that can be a predefined average value or an
average trajectory. Moreover, we will make difference
between consensus and stability protocols in treating
the equilibrium stability of the designed multi-system
dynamics.

The paper is organized as follows. Some preliminaries
results, the problem statement, and the finite-time av-
erage consensus protocol are formulated in section 2. In

section 3 one solves a finite-time average consensus of
multi-system without drift terms. The finite-time aver-
age consensus of multi-system with drift is detailed in
section 4. Finally, illustrative examples are presented in
section 5.

2 Preliminaries and problem formulation

Throughout this paper, we use R to denote the set of
real number. R

n is the n-dimensional real vector space
and ‖.‖ denotes the Euclidian norm. R

n×n is the set
of n × n matrices. diag{m1,m2, ...,mn} denotes a n ×
n diagonal matrix. In ∈ R

n×n is the identity matrix.
The symbol ⊗ is the Kronecker product of matrices.
We use sgn(.) to denote the signum function. For a
scalar x, note that ϕα(x) = sgn(x)|x|α. We use xi =
(xi1, ..., x

i
n)
T ∈ R

n, x = (x1, ..., xN )T to denote the vec-
tor in R

nN . Let φα(xi) = (ϕα(xi1), ..., ϕα(xin))T with
φα(x) = (φα(xi), ..., φα(xN ))T . Let 1n = (1, ..., 1)T . The
exponent T is the transpose.

2.1 Graph theory

In this subsection, we introduce some basic concepts
in algebraic graph theory for multi-agent networks. Let
G = {V , E} be a directed graph, where V = {1, 2, ..., n}
is the set of nodes, node i represents the ith agent, E is
the set of edges, and an edge in G is denoted by an or-
dered pair (i, j). (i, j) ∈ E if and only if the ith agent
can send information to the jth agent directly.
A = [aij ] ∈ R

n×n is called the weighted adjacency ma-
trix of G with nonnegative elements, where aij > 0 if
there is an edge between the ith agent and jth agent and
aij = 0 otherwise. Moreover, if AT = A, then G is also
called an undirected graph. In this paper, we will refer
to graphs whose weights take values in the set{0, 1} as
binary and those graphs whose adjacency matrices are
symmetric as symmetric. Let D = diag{d1, ..., dn} ∈

R
n×n be a diagonal matrix, where di =

n
∑

j=1

aij for i =

0, 1, ..., n. Hence, we define the Laplacian of the weighted
graph

L = D −A ∈ R
n×n

The undirected graph is called connected if there is a
path between any two vertices of the graph.

2.2 Some useful lemmas

Our main results are guided by the following Lemmas.
The reader may find more details in the associated ref-
erences.

Lemma 1 [Bhat, 2000]. Consider the system ẋ = f(x),
f(0) = 0, x ∈ R

n, there exist a positive definite contin-
uous function V (x) : U ⊂ R

n → R, real numbers c > 0
and α ∈]0, 1[, and an open neighborhood U0 ⊂ U of the
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origin such that V̇ + c(V (x))α ≤ 0, x ∈ U0\{0}. Then
V (x) converges to zero in finite time. In addition, the

finite settling time T∗ satisfies T∗ ≤
V (x(0))1−α

c(1 − α)
.

Lemma 2 [Olfati-Saber, 2004]. For a connected undi-
rected graph G, the Laplacian matrix L of G has the fol-

lowing properties, x
TLx = 1

2

n
∑

i,j=1

aij(xi − xj)
2, which

implies that L is positive semi-definite. 0 is a simple
eigenvalue of L and 1 is the associated eigenvector. As-
sume that the eigenvalues of L are denoted by 0, λ2, ..., λn
satisfying 0 ≤ λ2 ≤ ... ≤ λn. Then the second smallest
eigenvalue satisfies λ2 > 0. Furthermore, if 1

T
x = 0,

then x
TLx ≥ λ2x

T
x.

Lemma 3 [Hardy, 1952]. Let x1, x2, ..., xn ≥ 0 and 0 <

p ≤ 1. Then (

n
∑

i=1

xi)
p ≤

n
∑

i=1

xpi ≤ n1−p(

n
∑

i=1

xi)
p.

2.3 Problem statements

We solve the finite-time average consensus and stabil-
ity of two type of models in networked dynamic systems
affine in control inputs. The first type is given by equa-
tion (1) which describes a controlled dynamic system
without drift term. The second type is represented by
relation (2) which is clearly a controlled dynamic sys-
tem with drift term f i(xi). Let consider a group of N
high-dimensional agents where each agent’s behavior is
described by a controlled nonlinear model without drift
Σ1 represented by the controlled dynamic (1) and sys-
tem Σ2 with drift as shown by the controlled dynamic
(2), ∀i ∈ I = {1, ..., N}

Σ1 : ẋi = B(xi)ui (1)

and
Σ2 : ẋi = f i(xi) +B(xi)ui (2)

where xi ∈ R
n, xi = [xi1, x

i
2, ..., x

i
n]
T ,B(xi) ∈ R

n×m, the
continuous maps f i : R

n → R
n, ui ∈ R

m is the control
input and for 1 ≤ k ≤ n and 1 ≤ l ≤ m, B(xi) = [bkl].

Definition 4 Given a control-input ui as protocol, we
say that systems in network meet a finite-time average
consensus if for any system’s state initial conditions,
there exists some finite time T∗ such that:

lim
t→T∗

‖xi(t) − χ(t)‖ = 0 (3)

for any i ∈ I, and where χ(t) =
1

N

N
∑

j=1

xj(t) is the aver-

age trajectory.

χ(t) can be interpreted as the instantaneous consent
providing that serves the group objectives. χ is time-
varying, it can be also considered as the average trajec-
tory of the group, and it is not necessary the average
from the multi-system initial conditions. We show that
the dynamic of χ depends strongly on the adopted topol-
ogy of the group.

Subsequently, for the multi-Σ1 and multi-Σ2 systems one
might analyze the following protocols are given by (4)
and (5).
For i ∈ I, the consensus protocol candidate is given by,

ui = −C(xi)

N
∑

j=1

aijφα(xi − xj) (4)

while the stabilizing input candidate is as

ui = −C(xi)

N
∑

j=1

aij(φα(xi) − φα(xj)) (5)

where the aij elements are of the G adjacency matrix,
α ∈]0, 1[, and φα(.) is defined in section 2. The control
matrix C(xi) ∈ R

m×n depends on the agent’s model,
and it will be defined in the following.

As we can see in protocols (4) and (5), the finite-time
average consensus is closely related to finite-time sta-
bility. The main difference between the two problems is
that finite-time average consensus is to make the multi-
system converge to an agreement value or trajectory as
given by χ(t) in (3), while the stability of each agent
consists to reach an equilibrium. The following assump-
tion gives a conceptual form of C(xi) with respect to the
studied dynamics.

Assumption 5 The matrix C(xi) is such that the ma-
trix product B(xi)C(xi) is positive semi-definite and di-
agonalizable.

Throughout the paper, one denotes by B̃ = B(xi)C(xi)

where B̃ = [b̃mk]m,k for 1 ≤ m, k ≤ n.

3 Finite-time average consensus

The objective of this section is to solve finite-time av-
erage consensus problems of multi-system based on Σ1

and Σ2 descriptions. The average value is considered as
an agreement function of time but is not necessary func-
tion of multi-agent initial conditions. Further, what mo-
tivates the analysis is that models given by (2) and (1)
cover many autonomous system behaviors affine in the
control vector. One may cite, automated highway sys-
tems, multi-drone, multi-system of satellites or robots,
etc. When we refer to the protocol (4), the interac-
tion topology uses undirected flow information between
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nodes where each node’s vector of states is as a solution
of (2) or (1). The following two subsections treat the
multi-Σ1 and multi-Σ2 finite-time average consensus.

3.1 The multi-Σ1 finite-time average consensus

For finite-time average consensus of multi-Σ1 one consid-
ers, as interaction topology an undirected fixed graph,
an average vector obtained from each Σ1 vector of states,
and the protocol candidate (4). As the matrix B struc-
ture is taken identical for each Σ1 then one might think
to networked homogeneous systems. Recall that for a
group where each agent is of the form ẋi = ui, if the in-
terconnection topology is based on an undirected flow,
then the average consensus is solved with respect to the
average of the agents initial states. Consequently in the
following Lemma, for a multi-system based on (1) and
(4) we prove that the dynamic of the average is equal to
zero, and the agreement remains the average guided by
initial states.

Lemma 6 Given a multi-Σ1 and a fixed undirected
graph, under the protocol (4) the dynamic of the average
is equal to zero.

Proof. Let us calculate the time derivative of χ(t),

χ̇(t) =
1

N

N
∑

i=1

ẋi(t)

= −
1

N

N
∑

i=1

N
∑

j=1

aijB̃φα(xi − xj)

= −
1

2N

N
∑

i=1

N
∑

j=1

aijB̃φα(xi − xj) (6)

−
1

2N

N
∑

i=1

N
∑

j=1

aijB̃φα(xi − xj)

As aij = aji (undirected graph) and φα is an odd func-
tion, then it is straightforward to verify that the last
equality in (6) leads to χ̇(t) = 0. Consequently, χ(t) =
cst. We take χ(t) = χ(0) as the average of agents initial
states.

�

Proposition 7 Let G be connected and a fixed undi-
rected graph, under the protocol (4) and Assumption 5,
the multi-Σ1 achieves a finite-time average consensus in
the sense of (3).

Proof. We introduce ξi(t) = xi(t) − χ(t). Therefore by

Lemma 6, ξ̇i(t) = ẋi(t). Let ξ(t) = (ξ1, ..., ξN ) and let

us take the Lyapunov function candidate

V (ξ(t)) =
1

2
ξT ξ =

1

2

N
∑

i=1

(ξi)T ξi (7)

Due to the fact that aij = aji for all 1 ≤ i, j ≤ N , we
have

V̇ (ξ(t)) =

N
∑

i=1

(ξi)T ξ̇i

= −

N
∑

i,j=1

aij(ξ
i)T B̃φα(ξi − ξj)

= − 1

2

N
∑

i,j=1

aij(ξ
i − ξj)T B̃φα(ξi − ξj)

Let B̃ = PDP−1, whereD = diag{0, µ2(x
i), ..., µn(xi)} ∈

R
n×n, and µ2(x

i), ..., µn(x
i) are the eigenvalues of the

matrix B̃ given in increasing order such that µ2(x
i) > 0

for all xi ∈ R
n. Therefore,

V̇ (ξ(t)) ≤ −
1

2

N
∑

i,j=1

aijµ2(x
i)‖ξi − ξj‖α+1

≤ −
1

2

N
∑

i,j=1

(aijµ2(x
i))

2
α+1 ‖ξi − ξj‖2)

α+1

2 (8)

≤ −
1

2
(

N
∑

i,j=1

(aijµ2(x
i))

2
α+1 ‖ξi − ξj‖2)

α+1

2

Now we consider Θ = [θij ] ∈ R
n×n where θij =

(aijµ2(x
i))

2
α+1 . Then by Lemma 2 we have,

N
∑

i,j=1

(aijµ2(x
i))

2
α+1 ‖ξi − ξj‖2 = 2ξT (L(Θ) ⊗ In)ξ

So,

ξT (L(Θ) ⊗ In)ξ

‖ξ‖2
≥ λ2(L(Θ)) > 0

L(Θ) can be viewed is the graph Laplacian of the undi-
rected weighted graph G(Θ). Therefore, we can rewrite
the last inequality (8)

V̇ (ξ(t)) ≤ −2
α−1

2 (ξT (L(Θ) ⊗ In)ξ)
α+1

2

≤ −2
α−1

2 (
ξT (L(Θ) ⊗ In)ξ

‖ξ‖2
)

α+1

2 (V (ξ(t)))
α+1

2

≤ −2
α−1

2 λ
2

α+1

2 (V (ξ(t)))
α+1

2
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As a result, by Lemma 1, V reaches zero at an estimated
finite time

T∗(ξ(0)) =
V (ξ(0))

1−α

2

2
α−3

2 λ
2

α+1

2 (1 − α)

Thus, the multi-Σ1 dynamic system with the protocol
(4) solve a finite-time average consensus in the sense of
(3), and the average is none other than the multi-agent
initial state conditions guided by Lemma 6.

�

3.2 The multi-Σ2 finite-time average consensus

The multi-Σ2 behavior is based on (2) while the consen-
sus protocol candidate is given by (4). Recall that the Σ2

dynamic as given by (2) is currently present in controlled
autonomous systems. However, the drift term can be lin-
ear with respect to the system’s state vector or taken
in its nonlinear form. These two issues will be analyzed
in the following with the adequate sufficient conditions
for multi-Σ2 finite-time average consensus. To do, let us
first note that f i in (2) can be different for each dynamic
leading to heterogeneous multi-system. At first, the sub-
sequent analysis is build on this form of f i(xi) , Ãxi

with Ã is a constant matrix. A controlled dynamic sys-
tem with linear drift term is given by,

ẋi = Ãxi +B(xi)ui (9)

where Ã ∈ R
n×n with Ã = [ãp,q]1≤p,q≤n.

Proposition 8 Let G be an undirected and connected
graph. Under the protocol (4) and Assumption 5 the
multi-Σ2, built from (9), converges toward an average
trajectory and leads to a finite-time average consensus in
the sense of (3).

Proof. One introduces ξ(t) = xi(t) − χ(t). The goal is
to rewrite equation (9) in closed loop depending on ξi

and to prove that ξ converges to zero in finite time.
Since aij = aji and φα is an odd function, then we have,

χ̇(t) =
1

N

N
∑

i=1

(Ãxi +Bui)

=
1

N

N
∑

i=1

Ãxi +
1

N

N
∑

i=1

Bui (10)

=
1

N

N
∑

i=1

Ãxi

where by Lemma 6 we have

N
∑

i=1

Bui = 0. At this stage

compared to (6), the dynamic of χ(t) in (10) is different
of zero. Then the average considered here is time-varying
(average trajectory). This make our average consensus
analysis difficult and different from the case of driftless
multi-Σ1.
Now, let us redefine the closed loop dynamic of an agent
under (4),

ξ̇i = Ãξi +B(xi)ui

= Ãξi −

N
∑

i,j=1

aijB̃φα(ξi − ξj) (11)

Using the Lyapunov function (7), and consider the time
derivative of V (ξ) along the networked system trajecto-
ries (11), we may write

V̇ (ξ(t)) =

N
∑

i=1

(ξi)T ξ̇i

=

N
∑

i=1

(ξi)T Ãξi −

N
∑

i,j=1

aij(ξ
i)T B̃φα(ξi − ξj)

≤ ‖Ã‖∞

N
∑

i=1

‖ξi‖2 − 2
α−1

2 λ
2

α+1

2 (V (ξ(t)))
α+1

2

≤ ‖Ã‖∞V (ξ(t)) − 2
α−1

2 λ
2

α+1

2 (V (ξ(t)))
α+1

2

≤ −V (ξ(t))
α+1

2 [2
α−1

2 λ
2

α+1

2 − ‖Ã‖∞(V (ξ(t)))
1−α

2 ]
(12)

where ‖Ã‖∞ = max
1≤p≤n

n
∑

q=1

|ãpq| > 0. Since 1−α
2

> 0 and

V is continuous function which takes 0 at the origin
(ξ ≡ 0), there exists an open neighborhood Ω ⊂ R

Nn of
the origin and the last inequality (12) yields to

V̇ (ξ(t)) ≤ −2
α−3

2 λ
2

α+1

2 V (ξ(t))
α+1

2 (13)

by Lemma 2, V reaches zero at an estimated time

T∗(ξ(0)) =
V (ξ(0))

1−α

2

2
α−5

2 λ
2

α+1

2 (1 − α)
(14)

Therefore the networked system based on model (9) com-
bined with the protocol (4) leads to a finite-time average
consensus where the agreement is an average trajectory
defined by the solution from (10). Therefore, the finite-
time average consensus is achieved in the sense of (3).

�
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In the following, we consider that the drift term in (2)
is nonlinear which also commonly present in controlled
dynamic systems. Moreover, if the networked dynamic
systems is homogenous then the f i structure is iden-
tical, otherwise the multi-system is considered as het-
erogenous. Our main result in multi-Σ2 is built on the
assumption that f i(xi) is a convex function.

Proposition 9 Let G be a fixed undirected graph and
f i(xi) is convex. Under the protocol (4) a homoge-
nous/heterogenous multi-Σ2 based on (2) converges
toward an average trajectory and leads to a finite-time
average consensus in the sense of (3).

Proof. One introduces ξi(t) = xi(t) − χ(t). The goal is
to prove that ξi converges to zero in finite time. Since
aij = aji and φα is an odd function, then we have,

χ̇(t) =
1

N

N
∑

i=1

(f i(xi) +Bui)

=
1

N

N
∑

i=1

f i(xi) +
1

N

N
∑

i=1

Bui (15)

=
1

N

N
∑

i=1

f i(xi)

Obviously, the average is time-varying (average trajec-
tory). Now as f i is assumed to be convex then we have

f i(xi) −
1

N

N
∑

i=1

f i(xi) ≤ f i(xi) − f i(
1

N

N
∑

i=1

xi)

Moreover f i is locally lipschitz function in an open set
Ω ⊂ R

n containing ξ. Therefore,

‖f i(xi) −
1

N

N
∑

i=1

f i(xi)‖ ≤ ‖f i(xi) − f i(χ)‖ ≤ K1‖ξ
i‖

where K1 > 0 is the lipschitz’s constant. The dynamic
of each system in the group is defined by

ξ̇i = f i(xi) −
1

N

N
∑

i=1

f i(xi) +B(xi)ui

= f i(xi) −
1

N

N
∑

i=1

f i(xi) −

N
∑

i,j=1

aijB̃φα(ξi − ξj)

≤ K1‖ξ
i‖ −

N
∑

i,j=1

aijB̃φα(ξi − ξj) (16)

Now, for convenience the Lyapunov function is given by

(7) and the following holds,

V̇ (ξ(t)) =

N
∑

i=1

(ξi)T ξ̇i

≤ K1

N
∑

i=1

‖ξi‖2 − 2
α−1

2 λ
2

α+1

2 (V (ξ(t)))
α+1

2

≤ K1V (ξ(t)) − 2
α−1

2 λ
2

α+1

2 (V (ξ(t)))
α+1

2

≤ −V (ξ(t))
α+1

2 [2
α−1

2 λ
2

α+1

2 −K1(V (ξ(t)))
1−α

2 ]

≤ −2
α−3

2 λ
2

α+1

2 V (ξ(t))
α+1

2 (17)

At this stage, one concludes that the multi-Σ2 estab-
lished from (2) with the protocol (4) lead to a finite-
time average consensus. The estimated settling time is
as given by (14).

�

Note that if the convexity property of f i is not satisfied,
the alternative is to linearize each Σ2 system and use the
same procedure obtained for a multi-system built from
(9).

4 The multi-system finite-time stabilization

The finite-time stabilization problem in networked dy-
namic systems consists to stabilize individually each sys-
tem’s equilibrium state under some connection rules.
Then we consider dynamic systems in network with con-
tinuous nonlinear decentralized feedback that integrates
the graph theory. The following theoretical framework
tackles first to the multi-Σ1 stabilization problem, the
results will be extended after that to the analysis of the
multi-Σ2 stabilization problem.

4.1 The multi-Σ1 finite-time stabilization

The multi-Σ1 describes the behavior of driftless systems
like kinematic of unicycles and attitude of satellites. Fur-
ther, one considers here that each system is nonlinear
and not necessary fully actuated (dimension of the input
vector is fewer than the system degree of freedom).

Proposition 10 For a given fixed undirected graph G,
the protocol (5) applied to multi-Σ1 solves the stabilizing
problem in finite time.

Proof. From (5), let rewrite the matrix form

u = −(L⊗ In)(IN ⊗ C(xi))φα(x) (18)

with x = (x1, ...xN )T and u = (u1, ..., uN )T .
The networked systems from (1) under the stabilizing
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protocol (18) takes the following form (using the Kro-
necker product properties [Cremean, 2003])

ẋ = (IN ⊗B(xi))u

= −(IN ⊗B(xi))(L ⊗ In)(IN ⊗ C(xi))φα(x)

= −(L⊗ B̃)φα(x) (19)

It is obvious from (19) that the equilibrium is zero. The
goal is to prove that x reaches this equilibrium in finite
time. Taking the Lyapunov function V : R

Nn → R+

such that ∀ x ∈ R
Nn

V (x) =
1

1 + α
xTφα(x) (20)

which is positive definite with respect to x. Without loss
of generality, if we take z ∈ R

p with z = (z1, ..., zp), we

may write V (z) = 1

α+1

p
∑

k=1

|zk|
α+1, and its time deriva-

tive is V̇ (z) =

p
∑

k=1

ϕα(zk)
dzk
dt

= φTα (z)
dz

dt
, with ϕα and

φα are as given in notations.
Now, the time derivative of V from (20) along the tra-
jectories of (19) leads to

V̇ (x) = φTα (x)
dx

dt
= −φTα(x)(L⊗ B̃)φα(x)

Let

D(xi) =















0n

γ2(x
i)

. . .

γN (xi)















where 0n = diag{0, ..., 0} ∈ R
n×n, and ∀j = 2, ..., N

γj(x
i) = λj(L)̺n(x

i) with
̺n(x

i) = diag{0, µ2(x
i), ..., µn(xi)} ∈ R

n×n, and where

µ2(x
i), ..., µn(xi) are the eigenvalues of the matrix B̃

given in increasing order. λj(L) denotes the jth eigen-
value of L. Let them be λ2(L), ..., λN (L) in increasing
order. Since G is connected (by Lemma 2) λ2(L) > 0.
Therefore, ∀xi we have λ2µ2(x

i) > 0.

Further, since L ⊗ B̃ ∈ R
Nn×Nn is symmetric matrix,

then there exist an orthogonal matrixP ∈ R
Nn×Nn such

that L⊗ B̃ = PTD(xi)P . Let zα = Pφα(x), thus

V̇ = −zTαDzα

≤ −λ2µ1(x
i)‖zα‖

2

≤ −λ2µ1(x
i)‖φα(x)‖2 (21)

with λ2µ1(x
i) = min

zα⊥1Nn

zTαDzα
zTαzα

.

Let k = min
xi∈RN

λ2µ1(x
i) > 0 and x = 1N ⊗ xi =

(x̃1, ..., x̃Nn)
T , consequently,

V̇ ≤ −k

Nn
∑

i=1

|ϕα(x̃i)|
2

≤ −k
Nn
∑

i=1

|x̃i|
2α

≤ −k(
Nn
∑

i=1

|x̃i|
α+1)

2α

α+1 (by Lemma 3) (22)

which leads to

V̇ ≤ −k(α+ 1)
2α

α+1V
2α

α+1 (23)

Since 0 < 2α
α+1

< 1 and k(α + 1)
2α

α+1 > 0, by Lemma
1 the above differential equation shows that V reaches
zero in finite time

T∗(x(0)) =
(α + 1)V (x(0))

1−α

α+1

(1 − α)k(α + 1)
2α

α+1

Therefore, based on (1), the multi-Σ1 under the protocol
(5) reaches zero in finite-time.

�

4.2 The multi-Σ2 finite-time stabilization

Recall that the multi-Σ2 system is based on the following
dynamic with nonlinear drift terms

Σ2 : ẋi = f i(xi) +B(xi)ui (24)

where the f i structure can be taken different for each
system. In this case, we are in presence of heterogenous
multi-system. We assume at first that

φTα(xi)f i(xi) ≤ 0 (25)

and we propose the following,

Proposition 11 Suppose that the inequality (25) is sat-
isfied. For a given fixed undirected and connected graph
G, the protocol (5) associated to multi-Σ2 solves the sta-
bilizing problem in finite time.

Proof. Let x ∈ R
Nn and f(x) = (f1(x1), ..., fN(xN ))T .

Consider the stabilizing protocol (5), from (18) the
multi-Σ2 dynamic becomes,

ẋ = f(x) − (L⊗ B̃)φα(x) (26)
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Using the Lyapunov function (20), its time derivative is
as

V̇ (x) = φTα (x)f(x) − φTα (x)(L ⊗ B̃)φα(x) (27)

From hypothesis (25) the first term in (27) is negative.
The remaining terms in (27) must verify the inequality
given by (23). So, we conclude that the origin of (26) is
finite-time stable.

�

Remark 12 In practice condition (25) on the drift term
isn’t often verified. For this propose this condition can be
relaxed by the following proposition.

Proposition 13 If f i is locally Lipshitz function and
f i(0n) = 0n, given an undirected and connected graph
G, the multi-Σ2 origin from (24) and (5) is locally finite-
time stable.

Proof. Recall that the time derivative of the Lyapunov
candidate function (20)

V̇ (x) = φTα(x)f(x) − φTα (x)(L⊗ B̃)φα(x)

≤ c‖φTα(x)x‖ − φTα (x)(L⊗ B̃)φα(x) (28)

where c > 0 is the Lipshitz’s constant.

Let x = 1N ⊗ xi = (x̃1, ..., x̃Nn)
T , consequently from

(22), the inequality (28) permits to write

V̇ (x) ≤ c

Nn
∑

i=1

|x̃i|
α+1 − k(

Nn
∑

i=1

|x̃i|
α+1)

2α

α+1

≤ −V
2α

α+1 [k(α+ 1)
2α

α+1 − cV
1−α

1+α ] (29)

where k = min
xi∈RN

λ2µ1(x
i) defined in the proof of Propo-

sition 10. Since 1−α
1+α

> 0 and V is continuous function
which takes 0 at the origin, there exists an open neigh-
borhood Ω ⊂ R

Nn of the origin that permits to write

V̇ (x) ≤ −
k(α+ 1)

2α

α+1

2
[V (x)]

2α

α+1 (30)

by Lemma 1, V reaches zero at an estimated finite time

T∗(x(0)) =
(α+ 1)V (x(0))

1−α

α+1

2(1 − α)k(α + 1)
2α

α+1

Therefore, based on (24) and (5), the multi-Σ2 origin is
finite-time stable.

�

From the proposed stabilizing protocol, we may conclude
that the stability of each agent was asserted from the
networked behavior of the group. Further, the drift term
is not present in the protocol, however along the proofs,
this term is tackled by the control and sufficient con-
ditions on this term were introduced to guarantee the
multi-system stability. Note that in individual dynamic
system stability problem, the drift term must be com-
pensated by the control-input. Here, the stability of each
agent is obtained from the stable behavior of the group.
This analysis is supported by the following examples.

5 Illustrative examples

In order to validate the above theoretical framework,
some examples are presented in simulation and analyzed.
The multi-unicycle kinematics is taken in view of the
multi-Σ1 system. Further as multi-Σ2 examples, we pro-
pose to take a multi-second-order dynamics as system
with linear drift term and multiple pendulums integrat-
ing nonidentical nonlinear drift terms. The cited exam-
ples are expected to achieve finite-time average consen-
sus. At the second stage of the given numerical simula-
tions, the networked dynamical systems stability is han-
dled by tests on multi-unicycle. For consensus and sta-
bility objectives, the undirected fixed networked topol-
ogy (binary graph) is shown by Fig.1.

2 4

1 3

Fig. 1. G for a system with 4 agents.

5.1 The multi-system finite-time consensus results

Three illustrative examples are considered here where
the multi-unicycle that represents the networked sys-
tems modeled by (1), a multi-system based on second
order dynamic which imply a networked multi-model as
in (9), and a multi-pendulum example as in (2). Each
associated protocol is deduced from (4).
a) Average consensus in multi-unicycle
ConsiderN wheeled mobile robots (unicycles) where the
ith nonholonomic kinematic model is as:









ẋi

ẏi

θ̇i









=









cos θi 0

sin θi 0

0 1









(

ui

wi

)

i = 1, ..., N (31)

where (xi, yi, θi) denotes the position and the orien-
tation in a an inertial frame. The inputs ui and wi
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are the linear and angular velocities, respectively. Let

B =









cos θi 0

sin θi 0

0 1









and C =

(

cos θi sin θi 0

− sin θi cos θi 0

)

Based on Proposition 7, the finite-time average consen-
sus problem can be achieved through the following pro-
tocol

ui = −

N
∑

j=1

aijϕα(xi − xj) cos θi

−

N
∑

j=1

aijϕα(yi − yj) sin θi (32)

wi =
N
∑

j=1

aijϕα(xi − xj) sin θi

−

N
∑

j=1

aijϕα(yi − yj) cos θi (33)

where ϕα is defined in section 2 and aij are associated
to the graph in Fig.1. The simulation results are limited
to N = 4 that integrate the following initial conditions

(x1, y1, θ1)(t = 0) = (14, 2, π)

(x2, y2, θ2)(t = 0) = (−4, 2,−
π

2
)

(x3, y3, θ3)(t = 0) = (10, 8,
π

2
)

(x4, y4, θ4)(t = 0) = (−10,−8, 0)

0 5 10 15
−10

−5

0

5

10

15

 x
i

 time[sec]

 

 
x1

x2

x3

x4

ave(xi)

Fig. 2. Average consensus of position xi for 4 unicycles as
multi-Σ1

The numerical simulations are performed using (31)
and protocols (32)-(33). The results of figures Fig.
2-3 evolve according to the developed theoretical re-
sults of multi-Σ1. The common value is also the aver-
age of the unicycles initial conditions. The ‖(xi, yi) −

0 5 10 15
−8

−6

−4

−2

0

2

4

6

8

yi

 time[sec]

 

 
y1

y2

y3

y4

ave(yi)

Fig. 3. Average consensus of position yi for 4 unicycles as
multi-Σ1
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v
e(

x
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a
v
e(

y i
))
‖

 time[sec]

Fig. 4. Convergence of ‖(xi, yi) − (ave(xi), ave(yi))‖

(ave(xi(0)), ave(yi(0)))‖ converges in finite-time to zero
as show in figure Fig.4.

b) Average consensus in multi-second-order dy-
namics
A commonly used example in the literature is an agent
with a second-order dynamic (we can see [Wang, 2008])

ẋi = vi
v̇i = ui i = 1, ..., N (34)

where xi, vi ∈ R are the states and ui ∈ R is the control
input. The dynamic (34) takes the form given by (9) with

xi =

(

xi

vi

)

, f i(xi) =

(

0 1

0 0

)

xi and B =

(

0

1

)

.

For the protocol (4) we take C = (1 1). From Proposi-
tion 8 results, protocols that achieve finite-time average
consensus are such that

ui = −
N
∑

j=1

aij(ϕα(xi − xj) + ϕα(vi − vj)) (35)
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Let us take N = 4. The control parameter is taken α =
0.5, and each agent initial vector of states is as

(x1, x2, x3, x4)(t = 0) = (5, 10, 1,−5)(meter)

and

(v1, v2, v3, v4)(t = 0) = (2,−1, 8,−4)(meter/second)

For i = 1, ..., 4, xi (Fig. 5) and vi (Fig. 6) consent an av-
erage trajectory and this was confirmed by the expres-
sion (10).

Remark 14 Other processes can be studied, and where
the average is an agreement value of states like a com-
mon temperature of sensors where fluctuations of data is
important. The energy consumption is also an important
factor for stability of electric generators in networks. As
example, for a multi-second-order dynamics, the kinetic
energies consent an average, and this is shown by figure
Fig.7
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Fig. 5. A reached average trajectory in positions by 4 sec-
ond-order dynamics
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Fig. 6. A reached average trajectory in velocities by 4 sec-
ond-order dynamics

c) Average consensus in multi-pendulum dynam-
ics
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average:Ec

Fig. 7. The average of kinetic energies like consensus for 4
second-order dynamics

Consider a set of N pendulum with the following model

θ̈i = −
g

li
sin(θi) −

ψi
mili

θ̇i + ui (36)

where mi, gi, li and ψi are positive constants. For this
system the drift term issues from the first order differ-
ential form (see (2)) is

f i(θi, θ̇i) =

(

θ̇i

− g

li
sin(θi) −

ψi

mili
θ̇i

)

we can easily check the convexity condition for the drift
term f i. Following to the subsequent theoretical anal-
ysis (see Proposition 9), taking C = (1 1), a protocol
that solves the finite-time average consensus for multi-
pendulum is as

ui = −

N
∑

j=1

aij(ϕα(θi − θj) + ϕα(θ̇i − θ̇j)) (37)

This set of N = 4 pendulums is analyzed. As het-
erogenous multi-system, the 4 pendulum parameters
aren’t similar. Thus, m1 = 1, m2 = 2, m3 = 3
and m4 = 4 (Kg). The standard gravity vector is
g = 9.8(m.s−2), the lengths li = 1 (m) and the coeffi-
cient ψi = 0.1 (Kg.m2.s−1). Initial conditions are such

that θi = (−0.8, 0.4, 1, 2, 1.6) (rad) and θ̇i = (0, 0, 0, 0)
(rad.s−1).
Clearly from figures in Fig. 8-9, the synchronization to-
ward the average trajectory of 4 pendulums in angular
positions and velocities are obtained. It is important
to note that the average is time-varying and the multi-
system of pendulums is heterogeneous with respect to
the proposed physical parameters. This confirm the
theoretical results of Proposition 9.
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Fig. 8. The time-varying average of angular positions consent
by 4 pendulums.
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Fig. 9. The time-varying average of angular velocities consent
by 4 pendulums.

5.2 The multi-system finite-time stability results

We consider a multi-unicycle which represents the net-
worked system modeled by (1) (driftless). The associated
protocol is deduced from (5) and the graph is in Fig.1.
From Proposition 10, the finite-time stability problem is

achieved for the control matrixC =

(

cos θi sin θi 0

− sin θi cos θi 0

)

that leads to the stabilizing control-inputs

ui = −

N
∑

j=1

aij(ϕα(xi) − ϕα(xj)) cos θi

−

N
∑

j=1

aij(ϕα(yi) − ϕα(yj)) sin θi (38)

wi =

N
∑

j=1

aij(ϕα(xi) − ϕα(xj)) sin θi

−

N
∑

j=1

aij(ϕα(yi) − ϕα(yj)) cos θi (39)

where ϕα is defined in section 2 and aij are associated to
the graph in Fig.1. Taking N = 4, the initial conditions
are as

(x1, y1, θ1)(t = 0) = (4, 2,
π

4
)

(x2, y2, θ2)(t = 0) = (12,−10,−
π

2
)

(x3, y3, θ3)(t = 0) = (10,−8,
2π

3
)

(x4, y4, θ4)(t = 0) = (−10,−14, π)
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Fig. 10. Finite-time stability of xi as positions of 4 unicycles
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Fig. 11. Finite-time stability of yi as positions of 4 unicycles

The results of stabilization are sketched in figures Fig.10-
11 and the stabilizing protocols are given by figures
Fig.12-13 which confirm the stability of each unicycle at
the origin with continuous control feedback.
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Fig. 12. Stabilizing inputs ui of 4 unicycles
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Fig. 13. Stabilizing inputs wi of 4 unicycles

6 Conclusion

For networked dynamic systems affine in the control vec-
tor, two protocols are proposed and theoretically ana-
lyzed with respect to two types of nonlinear dynamic
models. For a nonlinear driftless multi-system, neces-
sary conditions on the control matrix are derived that
assert finite-time average consensus toward a predefined
agreement value, obtained from the multi-system initial
conditions. However, for multi-system integrating drift
terms, sufficient conditions on the drift term are dis-
cussed, and when they associated to the protocol solve
a finite-time average consensus where as a result an av-
erage trajectory is followed by the group. Further, our
stability results in networked dynamic systems overcome
the individual stability analysis of each system where
some obstructions for the agent’s stability at the ori-
gin occur. It is well known that an unicycle doesn’t ver-
ify the Brockett’s necessary condition and the stabiliza-
tion at the origin isn’t possible with feedbacks that de-
pend only on states. Here, due to the interconnection,
the multi-unicycle stability result implies the stability of
each unicycle with smooth and bounded control-inputs.
The results of the paper can be extended using a directed
graph while one may address the problem of consensus

and stability for heterogenous systems based on the two
fundamental dynamic models.
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