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Abstract— This paper considers the finite-time consensus and
stability problems of networked nonlinear systems under an
undirected fixed graph. A nonlinear system takes a general form
of a controlled first-order differential equation with/without
drift term. Sufficient conditions for finite-time consensus and
stabilization of networked nonlinear systems are achieved.
In multi-system formation, the proposed theoretical approach
generalizes the literature results for multi-agent stability and
consensus. Heterogenous/homogeneous multi-system formation
is a direct application of the given analysis. Some examples are
integrated for illustration.

I. INTRODUCTION

In recent years, the coordination problem of multi-agent
systems has received a lot of attention from various sci-
entific searchers due to the diversity of applications in
various areas such as mobile robots, air traffic control,
scheduling of automated highway systems, unmanned air
vehicles, autonomous underwater vehicles, sensor networks
and satellites. However, the challenge arising from multi-
agent systems is to develop distributed control policies based
on local information that enables all agents to reach an
agreement on certain quantities of interest, which is known as
the consensus problem. The consensus problem was initially
used in computer science. In recent years this paradigm
has introduced in multi-agent systems witnessed dramatic
advances of various distributed strategies that achieve agree-
ments. In [4] the authors proposed a simple but interesting
discrete-time model of finite agents all moving in the plane.
The proposed model used for the computer animation indus-
try. Each agent’s motion is updated using a local rule based
on its own state and the states of its neighbors. Jadbabaie
et al [5] provided a theoretical explanation of the consensus
property of the Vicsek model by using graph theory and
nonnegative matrix theory. For this model each agent’s set
of neighbors changes with time as system evolves. Olfati-
Saber and Murray [6] suggested a typical continuous-time
model. In this model the concepts of solvability of consensus
problems and consensus protocols were first introduced. The
authors used a directed graph to model the communication
topology among agents and studied three consensus prob-
lems, namely, directed networks with fixed topology, directed
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networks with switching topology, and undirected networks
with communication time-delays and fixed topology. Ren
and Beard [7] extended the results of Jadbabaie [5] and
Olfati-Saber [6] presented mathematically weaker conditions
for state consensus under dynamically changing directed
interaction topology.

Finite time consensus, which is one of the interesting
research problem in consensus, refers to the agreement of
a group of agents on a common state in finite time. Finite-
time consensus firstly was studied by Cortes [8], where a
non-smooth consensus algorithm is proposed. In the same
filed [9], and in [12] authors proposed a continuous nonlinear
consensus algorithm to guarantee the finite-time stability
under an undirected fixed interaction graph. Wang and Xiao
in [11] suggest an improvement to the proposed algorithm
proposed in [9]. The new algorithm proposed in [11] is
able to guarantee finite-time consensus under an undirected
switching interaction and a directed fixed interaction graph
when each strongly connected component of the topology
is detail-balanced. In [14], the authors study finite-time
consensus for second order dynamics with inherent nonlinear
dynamics under an undirected fixed interaction graph.

Recently, various finite-time stabilizing control laws have
been proposed using continuous state feedback and output
feedback controllers Bhat et al. [3]. Furthermore, the finite-
time control design has been extended to nth order sys-
tems with both parametric and dynamic uncertainties [2].
Although the finite-time design is generally more difficult
than the asymptotically stabilizing control due to the lack
of effective analysis tools. Also, the non-smooth finite-time
control synthesis can improve the system behaviors in some
aspects like high-speed, control accuracy, and disturbance-
rejection. Therefore, it is not surprising that finite-time
control ideas have been applied to multi-agent systems with
first-order agent dynamics using gradient flow and Lyapunov
function [8]-[10].

The present paper was motivate by the lack of methods
and results in the literature for finite-time consensus algo-
rithms for networked nonlinear systems. We consider two
dynamic models and fixed and undirected graphs. Two types
of networked nonlinear systems are studied. The first type
describes networked driftless systems, and the second type
represents networked drift systems. To solve these problems,
we propose nonlinear consensus protocols and modified then
for the stabilization objective. Lyapunov function and graph
theory are used for the theoretical analysis.

The paper is organized as follows. First, preliminaries
and problem formulation are shown in Section II. Then we
focus on the finite-time consensus of networked driftless
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systems in section III. Sufficient condition to finite-time
consensus of networked drift systems are given in section
IV. In section V, we present result for finite-time stabilization
of networked driftless/drift nonlinear systems. The paper is
ended by concluding remarks.

II. PRELIMINARIES AND PROBLEM FORMULATION

Throughout this paper, we use R to denote the set of
real number. Rn is the n-dimensional real vector space and
‖.‖ denotes the Euclidian norm. Rn×n is the set of n × n
matrices. diag{m1,m2, ...,mn} denotes a n × n diagonal
matrix. In ∈ Rn×n is the identity matrix. The symbol
⊗ is the Kronecker product of matrices. We use sgn(.)
to denote the signum function. For a scalar x, note that
ϕα(x) = sgn(x)|x|α. We use x = (x1, ..., xn)T to denote
the vector in Rn. Let φα(x) = (ϕα(x1), ..., ϕα(xn))T , and
1n = (1, ..., 1)T . The exponent T is the transpose.

A. Graph theory

In this subsection, we introduce some basic concepts in
algebraic graph theory for multi-agent networks. Let G =
{V, E} be a directed graph, where V = {1, 2, ..., n} is the
set of nodes, node i represents the ith agent, E is the set of
edges, and an edge in G is denoted by an ordered pair (i, j).
(i, j) ∈ E if and only if the ith agent can send information
to the jth agent directly.
A = [aij ] ∈ Rn×n is called the weighted adjacency matrix
of G with nonnegative elements, where aij > 0 if there is
an edge between the ith agent and jth agent and aij = 0
otherwise. Moreover, if AT = A, then G is also called
an undirected graph. In this paper, we will refer to graphs
whose weights take values in the set{0, 1} as binary and
those graphs whose adjacency matrices are symmetric as
symmetric. Let D = diag{d1, ..., dn} ∈ Rn×n be a diagonal

matrix, where di =

n∑
j=1

aij for i = 0, 1, ..., n. Hence, we

define the Laplacian of the weighted graph

L = D −A ∈ Rn×n.

The undirected graph is called connected if there is a path
between any two vertices of the graph. Note that time varying
network topologies are not considered in this paper.

B. Some useful lemmas

In order to establish our main results, we need to recall
the following Lemmas.

Lemma 2.1: [3]. Consider the system ẋ = f(x), f(0) = 0,
x ∈ Rn, there exist a positive definite continuous function
V (x) : U ⊂ Rn → R, real numbers c > 0 and α ∈]0, 1[,
and an open neighborhood U0 ⊂ U of the origin such that
V̇ + c(V (x))α ≤ 0, x ∈ U0\{0}. Then V (x) converges to
zero in finite time. In addition, the finite settling time T

satisfies T ≤ V (x(0))1−α

c(1− α)
.

Lemma 2.2: [6]. For a connected undirected graph G,
the Laplacian matrix L of G has the following properties,

xTLx = 1
2

n∑
i,j=1

aij(xi − xj)
2, which implies that L is

positive semi-definite. 0 is a simple eigenvalue of L and
1 is the associated eigenvector. Assume that the eigenvalues
of L are denoted by 0, λ2, ..., λn satisfying 0 ≤ λ2 ≤ ... ≤
λn. Then the second smallest eigenvalue satisfies λ2 > 0.
Furthermore, if 1T x = 0, then xTLx ≥ λ2xT x.

Lemma 2.3: [15]. Let x1, x2, ..., xn ≥ 0 and 0 < p ≤ 1.

Then (

n∑
i=1

xi)
p ≤

n∑
i=1

xpi ≤ n
1−p(

n∑
i=1

xi)
p.

C. Problem statements

We propose to study the finite-time consensus and stability
of two-types of networked nonlinear systems. The first type
is given by equation (1) which describes a controlled system
without drift. The second type is represented by equation (2)
which is clearly a controlled system with drift. One notes that
the matrix B for the two models depends on the system’s
states. Also, in this paper equations (1-2) describe the behav-
ior of an autonomous agent where when we deal with multi-
system based on model (1) only, the networked systems is
homogenous. However if model (2) and (1) are mixed then
the networked systems is heterogenous. Consequently, for
networked nonlinear consensus and stability like objectives,
models (2) and (1) could generalize the case of multi-agent
formation. To the best of our knowledge, consensus and
stability problems based on models (1) and (2) have not yet
studied.

Consider a group of N high-dimensional agents where
each agent’s behavior is described by a controlled nonlinear
model without drift as given by dynamic (1) and with drift
as shown by dynamic (2), ∀i ∈ I = {1, ..., N}

ẋi = B(xi)ui (1)

and
ẋi = fi(xi) +B(xi)ui (2)

where xi ∈ Rn, B(xi) ∈ Rn,m, the continuous maps fi :

Rn → Rn and ui ∈ Rm is the input which depends only on
the state of its neighbors.

Definition 2.4: We say that systems in networks based on
control-inputs ui solves a consensus problem in finite time,
if for any system’s state initial conditions, there exists some
finite time T such that lim

t→T
‖xi(t) − xj(t)‖ = 0 for any

i, j ∈ I.
We are now in position to present a consensus protocol,
which will be proposed to solve finite-time consensus prob-
lems:
For i ∈ I, let

ui = −C(xi)φα(

N∑
j=1

aij(xi − xj)) (3)

where C(xi) ∈ Rm,n, α ∈]0, 1[ and aij are the adjacent
elements related to G. We assume the following,
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Assumption 2.5: The matrix product B(xi)C(xi) is posi-
tive semidefinite.

III. FINITE-TIME CONSENSUS FOR NETWORKED
DRIFTLESS SYSTEMS.

We consider networked systems with each system’s model
is given by (1) and the consensus protocol is as proposed in
(3).

Proposition 3.1: Given an undirected and connected
graph G, the networked system of form (1) with the protocol
(3) lead to a finite-time consensus.

Proof. For x = (x1, ...xN )T and u = (u1, ..., uN )T , the
networked systems is defined by:

ẋ = IN ⊗B(xi)u (4)

One starts the analysis by an adequate change of variable,
for i ∈ I, let

yi =

N∑
j=1

aij(xi − xj) (5)

consequently, the protocol (3) is rewritten ui =
−C(xi)φα(yi), or in compact form u = −(IN ⊗
C(xi))φα(y) where y = (y1, ..., yN )T . Therefore, from (5)
we have

y = (L⊗ In)x (6)

With the given consensus protocol, the dynamic of the
networked system (4)-(6) under u is given by

ẏ = (L⊗ In)ẋ
= −(L⊗ In)(IN ⊗B(xi))(IN ⊗ C(xi))φα(y)

= −(L⊗B(xi)C(xi))φα(y) (7)

where in the last step we use Kronecker product properties
(see [1]). The goal is to prove that y reaches zero in finite
time. Therefore, taking the Lyapunov function candidate V :
RNn → R+ such that ∀ y ∈ RNn

V (y) =
1

1 + α
yTφα(y) (8)

which is positive definite with respect to y, and consider the
time derivative of V along the trajectories of (7), we get

V̇ (y) = φTα(y)
dy
dt

= −φTα(y)(L⊗B(xi)C(xi))φα(y)

(9)

Let

D(xi) =


0n

γ2(xi)
. . .

γN (xi)


where 0n = diag{0, ..., 0} ∈ Rn×n, and
∀j = 2, ..., N γj(xi) = λj(L)%n(xi) with
%n(xi) = diag{0, µ2(xi), ..., µn(xi)} ∈ Rn×n, and
where µ2(xi), ..., µn(xi) are the eigenvalues of the matrix

B(xi)C(xi) given in increasing order. λj(L) denotes the
jth eigenvalue of L. Let them be λ2(L), ..., λN (L) in
increasing order. Since G is connected (by Lemma 2.2)
λ2(L) > 0. Therefore, ∀xi we have λ2µ2(xi) > 0.
Further, since L ⊗ B(xi)C(xi) ∈ RNn×Nn is symmetric
matrix, then there exist an orthogonal matrix P ∈ RNn×Nn
such that L⊗B(xi)C(xi) = PTD(xi)P . Let zα = Pφα(y),
thus

V̇ = −zTαDzα
≤ −λ2µ1(xi)‖zα‖2

≤ −λ2µ1(xi)‖φα(y)‖2 (10)

with λ2µ1(xi) = min
zα⊥1Nn

zTαDzα
zTαzα

.

Let k = min
xi∈RN

λ2µ1(xi) > 0 and y = 1N ⊗ yi =

(ỹ1, ..., ỹNn)T consequently,

V̇ ≤ −k
Nn∑
i=1

|ϕα(ỹi)|2

≤ −k
Nn∑
i=1

|ỹi|2α

≤ −k(

Nn∑
i=1

|ỹi|α+1)
2α
α+1 (by Lemma 2.3) (11)

Then
V̇ ≤ −k(α+ 1)

2α
α+1V

2α
α+1 (12)

Since 0 < 2α
α+1 < 1 and k(α + 1)

2α
α+1 > 0, and by Lemma

2.3, the above differential equation gives that V reaches zero

in finite time
(α+ 1)V (y(0))

1−α
α+1

(1− α)k(α+ 1)
2α
α+1

. Therefore the networked

systems given by (1) and the protocol (3) lead to a finite-time
consensus. This ends the proof.

�

Remark 3.2: From inequality (12), if α = 1, then the
finite-time consensus becomes an asymptotically consensus.

Remark 3.3: The protocol (3) can be applied for the case
of a simple dynamic agent (ẋi = ui) where B = 1 and
xi ∈ R (see [11]).

Remark 3.4: A simple choice of the matrix C that satisfies
Assumption 2.5 is to take C = BT .

A. Multi-unicycle consensus for the rendezvous problem

We propose to study the finite-time consensus of multi-
unicycle for the rendezvous problem which is a similar model
given by (1). Consider N wheeled mobile robots where the
ith nonholonomic kinematic model is as: ẋi

ẏi
θ̇i

 =

 cos(θi) 0
sin(θi) 0

0 1

( ui
wi

)
i = 1, ..., N (13)
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where (xi, yi, θi) denotes the position and the orientation in
a inertial frame. The inputs ui and wi are the linear and
angular velocities, respectively. Let

B =

 cos(θi) 0
sin(θi) 0

0 1

 and C = BT

Based on Proposition 3.1, the finite-time consensus for the
rendezvous problem of networked unicycles can be solved
through the following protocol in inputs:

ui = −ϕα(

N∑
j=1

aij(xi − xj)) cos θi

− ϕα(

N∑
j=1

aij(yi − yj) sin θi) (14)

wi = −ϕα(

N∑
j=1

aij(θi − θj)) (15)

Fig. 1. G for a system with 4 agents.

For the proposed undirected graph (Fig.1), results for
the rendezvous case given by the protocol (14)-(15) are
shown in figures (Fig.2-Fig.3). Four unicycles consent on
one point in the phase plane. These simulation results im-
ply the following initial conditions (x1, y1, θ1)(t = 0) =
(4, 2, π4 ), (x2, y2, θ2)(t = 0) = (2,−1,−π2 ), (x3, y3, θ3)(t =
0) = (1, 8, 2π3 ) and (x4, y4, θ4)(t = 0) = (−1,−4, π).
(xr, yr, θr)(t = T ) = 0 is the rendezvous common point
Fig. 2. The angular positions initially are different and reach
a common value in finite time which imply the θi consensus
(Fig. 3).

Fig. 2. Phase plot of four unicycles rendezvous under protocols (14)-(15)

Fig. 3. Angular positions θi (i = 1, ..., 4) under protocols (14)-(15)

IV. FINITE-TIME CONSENSUS FOR NETWORKED DRIFT
SYSTEMS.

We consider networked systems where each system’s
model is given by dynamic (2) and the consensus protocol
is proposed in (3). Further, we assume that the drift term fi
satisfies the following inequality

‖
N∑
j=1

aij(fi(xi)− fj(xj))‖ ≤ c‖
N∑
j=1

aij(xi − xj)‖ (16)

where c is a positive constant. The networked in homoge-
neous case implies that the drift term is identical for each
system. Here, as shown in (2) the networked systems is taken
heterogeneous where we can have different structures of the
drift term that satisfies the inequality (16). The goal here is
to design ui in (2) such that ‖xi(t) − xj(t)‖ → 0 in finite
time ∀ i, j = 1, ..., N .

Proposition 4.1: Given an undirected and connected
graph G, under the inequality (16) the networked systems of
form (2) with the protocol (3) lead to a finite-time consensus.

Proof. Using the change of variable given by (5), we have

ẏi =

N∑
j=1

aij(fi(xi)− fj(xj)) +

N∑
j=1

aij [B(xi)ui−B(xj)uj ]

(17)
For y = (y1, ..., yN )T , f(x) = (f1(x1), ..., fN (xN ))T and
using (6), the networked systems is given by

ẏ = (L⊗ In)f(x)− (L⊗B(xi)C(xi))φα(y) (18)

From inequality (16), we have

‖(L⊗ In)f(x)‖ ≤ c‖(L⊗ In)x‖ = c‖y‖ (19)

Using the Lyapunov function (8), and consider the time
derivative of V (y) along trajectories of the networked sys-
tems (18), we may write

V̇ (y) = φTα(y)(L⊗ In)f(x)− φTα(y)(L⊗B(xi)C(xi))φα(y)

≤ c‖φTα(y)y‖ − φTα(y)(L⊗B(xi)C(xi))φα(y)

Let y = 1N ⊗ yi = (ỹ1, ..., ỹNn)T , consequently from (11)
we get

V̇ (y) ≤ c
Nn∑
i=1

|ỹi|α+1 − k(

Nn∑
i=1

|ỹi|α+1)
2α
α+1

≤ −V
2α
α+1 [k(α+ 1)

2α
α+1 − cV

1−α
1+α ] (20)
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where k = min
xi∈RN

λ2µ1(xi) defined in the proof of

Proposition 3.1. Since 1−α
1+α > 0 and V is continuous

function which takes 0 at the origin, there exists an open
neighborhood Ω of the origin that permits to write

V̇ (y) ≤ −k(α+ 1)
2α
α+1

2
[V (y)]

2α
α+1 (21)

by Lemma 2.2, V reaches zero at an estimated finite time

T (y(0)) =
(α+ 1)V (y(0))

1−α
α+1

2(1− α)k(α+ 1)
2α
α+1

Therefore the networked systems based on model (2) and
the protocol (3) lead to a finite-time consensus. This ends
the proof.

�

Remark 4.2: From the proof of Proposition 4.1 if we take
α = 1, the finite-time consensus becomes an asymptotically
consensus.

Example 4.3: Consider a second-order agent dynamics

ẋi = vi

v̇i = ui i = 1, ..., N (22)

where xi ∈ Rn denotes the position, vi ∈ Rn, and ui ∈ Rn
are control inputs. The dynamics (22) takes the form given
by (2) with:

xi =

(
xi
vi

)
, fi(xi)

(
vi
0

)
and B =

(
0
1

)
.

Condition (16) on fi can be easily verified. Taking C =(
1 1

)
from protocol (3) and Proposition 4.1 we are able

to propose the following:

ui = −ϕα(

N∑
j=1

aij(xi − xj))− ϕα(

N∑
j=1

aij(vi − vj)) (23)

For a fixed undirected graph, the double integrator (22)
under ui achieves consensus in positions and velocities. Note
that the finite-time consensus for multi-agent networks with
second-order agent dynamics as given by (22) was studied
by Wang et al. [13]. The consensus protocol proposed here
for the double integrator is a direct application of Proposition
4.1, and is different from that given in [13].

Numerical simulation is presented to illustrate consensus
of four agents through the graph (Fig. 1). The α control
parameter is taken α = 0.5, and each agent initial posi-
tion is (x1, x2, x3, x4)(t = 0) = (1, 3, 2, 4) (meter) and
initial velocity is (v1, v2, v3, v4)(t = 0) = (0,−2, 1, 5)
(meter/second).
Figures in Fig.4 show the effectiveness of the given consen-
sus protocol (23).

V. FINITE-TIME STABILIZATION FOR NETWORKED
DRIFT/DRIFLESS SYSTEMS

From Proposition 3.1 proofs, we can distinguish another
form of protocol (3) which leads to finite-time stability but
do not solve the consensus problem.

Fig. 4. Position and velocities of the 4 agents

Corollary 5.1: Let

ui = −
N∑
j=1

aijC(φα(xi)− φα(xj)) (24)

Suppose that G is undirected graph and connected. if the
stabilizing protocol (24) is taken for (1), then the resulting
networked system states reach zero in finite time.

Proof. The networked systems from (1) under the stabilizing
protocol (24) takes the following matrix form

ẋ = −[L⊗B(xi)C(xi)]φα(x) (25)

Consider the Lyapunov function (8) with respect to the
state x, it is straightforward to prove (steps are similar to
Proposition 3.1),

V̇ (x) ≤ −k(α+ 1)
2α
α+1 [V (x)]

2α
α+1 (26)

Therefore, the origin of networked systems based on (1)
is finite-time stable, and the estimated settling time is

T (x(0)) =
(α+ 1)V (x(0))

1−α
α+1

(1− α)k(α+ 1)
2α
α+1

�

Now, the finite-time stability of networked systems mod-
eled by (2) is asserted by the following corollary.

Corollary 5.2: Consider N networked systems where
each system is behaved by (2),

ẋ = f(x) + (IN ⊗B(xi))u (27)

assume that,
φTα(xi)fi(xi) ≤ 0 (28)

Given a connected undirected graph G, under the protocol
(24) the origin of (27) is finite-time stable.
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Proof. The networked systems is defined by (27) where x ∈
RNn, u ∈ RNm and f(x) = (f1(x1), ..., fN (xN ))T . Now,
let introduce the stabilizing protocol (24) into (27) then the
dynamic becomes,

ẋ = f(x)− (L⊗B(xi)C(xi))φα(x) (29)

The time derivative of the Lyapunov function (8) leads to

V̇ (x) = φTα(x)f(x)− φTα(x)(L⊗B(xi)C(xi))φα(x) (30)

From hypothesis (28) the first term in equation (30) is
negative. The remaining terms in (30) could verified the
inequality given by (26). So, we conclude that the origin
of (27) is finite-time stable. This ends the proof.

�

A simple and practical example in networked systems
with drift terms can be taken from pendulum. Consen-
sus/stabilization for networked pendulums consists to syn-
chronize angular positions and velocities. The asymptotic
case was studied by Cremean and Murray in [1].

Example 5.1: Consider a set of pendulum equation in the
linear form

θ̈i = −gi
li
θi −

ψi
mili

θ̇i + ui (31)

where mi, gi, li and ψi are positive constants. For this sys-
tem, we can easily check condition (28). Then a stabilizing
feedback law with respect to the matrix C =

(
0 1

)
is

given by

ui = −
N∑
j=1

aij(ϕα(θ̇i)− ϕα(θ̇j)) (32)

We conclude that the finite-time stability of the networked
pendulums can be asserted by (32). Note that for the asymp-
totic stability case we can see Cremean’s work [1] where
α = 1.

Remark 5.1: In practice, condition (28) on the drift term
isn’t often verified. For this propose condition (28) can be
relaxed by the following proposition.

Proposition 5.2: If fi is locally Lipshitz function and
fi(0n) = 0n, given an undirected and connected graph G,
using (2) the networked systems origin of from (24) is locally
finite-time stable.

Proof. Recall that the time derivative of the Lyapunov
candidate function (8)

V̇ (x) = φTα(x)f(x)− φTα(x)(L⊗B(xi)C(xi))φα(x)

≤ χ‖φTα(x)x‖ − φTα(x)(L⊗B(xi)C(xi))φα(x)

where χ > 0 is the Lipshitz’s constant. Then from proof
of Proposition 4.1 the constant c can be identified to χ.
Consequently the rest of the proof follows.

VI. CONCLUSIONS

The controlled dynamic model of autonomous systems are
presented in this work by two-types of well known nonlinear
and continuous first-order differential equations. This has
led to controlled system with and without drift. Based on
these two types of system’s behavior there has been inter-
est to consensus and stabilizing problems of multi-system
in networks. Some protocols are proposed and sufficient
conditions are achieved to solve finite-time consensus and
stabilities of networked systems. The theoretically results
of the paper could solve problems of homogenous and het-
erogenous strategies of formation. As perspective in multi-
system formation based on the two given models, problems
related to sharing objectives, obstacle avoidance and collision
avoidance can follow the same procedure of analysis.
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