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This work treats the dynamic control of multi-mobile robot formation taking
robot dynamic interconnections. The dynamic of each agent is modeled by a
nonlinear second order differential equation, and its behavioral control will de-
pends on attractive or repulsive interconnection function. The interconnection
dynamic function is built around certain estimated parameters, and taking the
dynamic of agents in neighbor. Once the target/objectif is fixed, the formation
convergence in presence of known obstacles is obtained through a stabilizing
nonlinear sliding mode controller, and under the bound of the interconnection
parameters. Some bio-inspired examples can be concerned by our modeling
and control approaches, one thinks to the autonomy of a herd of sheep in dis-
placement, a flock of birds or a school of fish, and in generally the problem of
swarms.

Keywords: multi-mobile robot; formation stabilization, dynamic interconnec-
tion.

1. Introduction

The automatic control algorithm resulting from the stability analyzes of
a multi-agent system in formation is an attractive area in control theory.
Some results issue from the linear or nonlinear stability theory cannot be
applied directly to systems in formation, because, one thinks not only to
the stability of each agent but also to the formation shape stability. Such
an investigation will led to us as centralized or decentralized agents be-
havior. A common approaches for formation feedback control are based on
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multi-agent kinematics.1–3 While the kinematic behaviors of swarms, es-
pecially for micro/nano robots, the models are inspired from continuous
physical behavior of particles like the diffusion equations, reaction-diffusion
phenomena4 or wave equation.5 In order to ensure information exchange, a
unified, distributed formation control architecture that accommodates an
arbitrary number of group leaders and arbitrary information flow among
vehicles is proposed by Ren.2 The architecture requires only local neighbor-
to-neighbor information exchange. The formation coalition and its synchro-
nization was studied by Olfati-Saber6 where a particle that evolves on a
sphere (swarms on sphere) exhibits self-organization. The self-organization
process around a target was studied also by EL kamel1 using decentralizing
control, and general rules are given to overcome obstacles as perturbation
while the formation reach the target. In multi-agent dynamic behavior, the
acceleration of each agent is introduced and the problem deals with input
and interconnection in forces. Thinking of multi-agent control with dynam-
ics, one cites the work of Chang,7 Kowalczyk,8 Essaghaier9 and Gazi.10 In
Chang,7 techniques using gyroscopic forces and scalar potentials are used to
create swarming behaviors for multiple agent systems. The methods result
in collision avoidance between the agents as well as with obstacles. While
in Kowalczyk,8 the paper expands existing framework proposing attrac-
tion area potential function which allows to build formation and repulsion
potential function which allows to avoid collisions with obstacles. The flex-
ible virtual structure which is an attractive area in formation control was
analytically solved by Essaghaier.9 In this paper the dynamic control of
multi-agent system is treated including an unknown interconnection func-
tion between the agents and their neighbors. Considering that this function
is not well known, the estimated interconnection parameters are combined
with a sliding mode control law ensuring the robust stabilization of the
formation with obstacles avoidance.

2. Problem description

Consider n agents moving in the plane where the dynamic behavior of the
ith agent is described by

(
ẍi

ÿi

)
=

(
uxi

uyi

)
(1)

where for i ∈ N, (xi, yi) denote the cartesian coordinates (positions) of
robot i. uxi and uyi are the inputs that should be defined with respect
to the formation stabilizing problem and the regulation control including
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obstacles avoidance for targets capturing. More generally, one substitutes
the behavior of the ith agent by this writing

q̈i = ui (2)

with qi = (xi, yi) ∈ R2 and ui = (uxi
, uyi

) ∈ R2. In formation regulat-
ing/tracking control, intercommunication between agents is necessary to
success the mission. Such an investigation leads us to take into account
interactions between agents. Hence, one modifies the dynamic behavior as
follows

q̈i = ui +
∑

j=1,N i

j 6=i

Qij(t, qi, qj)
(3)

where N i denotes the neighbor of agent i and Qij ∈ R2 defines the in-
terconnection between agent i and agents j which is function of qi and
qj positions. Note that Qij gives the interconnection into the two direc-
tions of motion. We suppose that Q̂ij is the estimate of Qij such that the
sum of the estimation error component is bounded by a known function
Ki(t, qi, qj) ∈ R2:

∑

j=1,N i

j 6=i

|Q̂ij(.)−Qij(.)| ≤ Ki(t, qi, qj) , (Kix,Kiy)T (4)

We have the following result.

Theorem 2.1. Let ua a control law that stabilizes asymptotically the sys-
tem (3) while it approaches the equilibrium point and let V the Lyapunov
function associated to q̈ = ua +

∑

j=1,N i

j 6=i

Qij(t, qi, qj). Given a scalar function

ν from Rn to R, the control law

u = ua + ν

(
∂V

∂q̇

)⊥
(5)

stabilizes, as well, asymptotically the solution of system (3) while approach-
ing the equilibrium.

Proof. Let V (q, q̇) be the Lyapunov function associated to q̈ = ua +∑

j=1,N i

j 6=i

Qij(t, qi, qj), then

V̇ =
∂V

∂q
q̇ +

∂V

∂q̇
q̈ ≤ 0
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or
∂V

∂q
q̇ +

∂V

∂q̇
(ua +

∑

j=1,N i

j 6=i

Qij(.)) ≤ 0

Now replace ua by u from (5) in the inequality above, it leads to

V̇ =
∂V

∂q
q̇ +

∂V

∂q̇
(ua +

∑

j=1,N i

j 6=i

Qij(.)) + ν
∂V

∂q̇

(
∂V

∂q̇

)⊥
(6)

=
∂V

∂q
q̇ +

∂V

∂q̇
q̈ ≤ 0

Hence, the solution of (3) subject to the control law u converges to the
equilibrium.

2.1. Stabilizing results

In the following one treats the motion of the formation and the sliding
mode techniques will be considered in the stabilizing control investigation.
It is well known that this approach is robust, and more details about this
technique are in Slotine.11 The sliding mode technique was also proposed
by Gazi10 in the case of swarms aggregation. An inter-agent connection
function is added in our work and a non free environment is considered. Our
main result is summarized in the following. Let us introduce this stabilizing
control theorem.

Theorem 2.2. Given an objective qr
i and consider the error in position

eqi = qi − qr
i , the slide surface si = q̇i + λieqi , the following input,

uix = −
∑

j=1,N i

j 6=i

Q̂ij(.)x − λiq̇ix − (Kix + ηi)sgn(six) (7)

uiy = −
∑

j=1,N i

j 6=i

Q̂ij(.)y − λiq̇iy − (Kiy + ηi)sgn(siy)

ensures the exponential stabilization of the agent i with (qi, q̇i) → (qr
i , 0)

(ηi > 0, λi > 0).

Proof. As we consider only the stabilizing problem of agent i, then q̇r
i =

q̈r
i = 0. From the Lyapunov function Vi = 1

2s2
i , the time derivative is a:
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V̇i = ṡixsix + ṡiysiy from the dynamic of si, we obtain:

ṡixsix =
∑

j=1,N i

j 6=i

(Qij(.)x − Q̂ij(.)x)six − (Kix + ηix)sixsgn(six)

The same computation can be deduced to ṡiysiy, consequently it is straight-
forward to prove from (4)

V̇ ≤ −ηix|six| − ηiy|siy| ≤ 0

which means that for some constants ηi > 0, si = 0 will be achieved in finite
time, and the exponential stabilization of each agent toward the objective
is asserted.

3. Dynamic interconnection function

In this section, we give more details about the interconnection function and
its estimation which permits to guarantee the inter-agent collision. Also we
have to define agents belonging to the neighbor N i, and to construct the
function that leads to a free motion in regard to obstacles. The information
exchanged between the ith and the jth agent can be modeled by4

Qij(t, qi, qj) = −(qi − qj)(ai − bie
− ‖qi−qj‖2

ci ) (8)

where ai, bi and ci are positive scalar parameters determine the degree of
rigidity of the connection. The Qij function can be associated to a repulsion
and attraction potentials. These potential functions are such that

−∇qiVa(‖qi − qj‖)−∇qiVr(‖qi − qj‖) = Qij(t, qi, qj) (9)

hence, from (8) we can deduce,

∇qiVa(‖qi − qj‖) = (qi − qj)ai (10)

∇qiVr(‖qi − qj‖) = −(qi − qj)bie
− ‖qi−qj‖2

ci

With the given potential functions we assume that the estimate of Qij

is subject to (ai, bi) parameter variation with some boundary conditions
and âi ∈ [(ai)min, (ai)max] and b̂i ∈ [(bi)min, (bi)max]. Consequently,

Q̂ij(t, qi, qj) = −(qi − qj)
(

âi − b̂ie
− ‖qi−qj‖2

ci

)
(11)
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Hence,

| Q̂ij(.)−Qij(.) | ≤| qi − qj |
(
| ai − âi | + | bi − b̂i | e−

‖qi−qj‖2
ci

)
(12)

≤| qi − qj |
(

(ai)max + (bi)maxe
− ‖qi−qj‖2

ci

)
(13)

Then, we can take

Ki(t, qi, qj) ,
∑

j=1,N i

j 6=i

| qi − qj |
(

(ai)max + (bi)maxe
− ‖qi−qj‖2

ci

)
(14)

The minimum value of âi leads to a released connection while the maximum
value means a rigid connection between the ith agent and its neighbor. It
remains to ensure the formation obstacle avoidance while it behaves to
targets.

4. Obstacle avoidance

Assume that an agent governed by equation (3) is moving in a space con-
taining one obstacle and let q0 its initial position on t = t0 and its final one
corresponds to the frame origin. To move from an initial position q0 to a
final one qf there exist an infinity of possible trajectories, having different
behaviors during their movement. That is why it is very hard to handle a
agent governed by a dynamical system in order to join initial and final de-
sired positions while forcing it to obey to some behavioral criteria between
t0 and tf . Now, we will design the function ν that ensures the stabilization
toward the target while avoiding fixed obstacles. The result is summarized
in the following theorem.

Theorem 4.1. Consider the interconnected multi-agent dynamic (3). Let
qi0 = (xi0, yi0) the initial condition of agent i, and Li(x) the equation of the
ith line joining the desired position qr

i = (qr
ix, qr

iy) and the obstacles which
are assumed to be centered in a circle C, with O = (Ox, Oy) its center and

r the radius. Let Oqi = O + r
qi −O

‖qi −O‖ ∈ C. The following control law,

ui = (uix, uiy)T + νi(q̇i + λieqi)
⊥ (15)

where

νi = −sign([yi0 − Li(xi0)][qr
ix −Ox])

‖qi −Oqi‖
(16)

ensures the following,
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(1) ‖qi −O‖ − r 6= 0, ∀t ≥ 0 (obstacles avoidance).
(2) qi converges asymptotically to qr

i and no collision occurs among the qi.

Proof. One notes that K = q ∈ Ω/yi ≥ L(xi), H = q ∈ Ω/yi ≤ L(xi),
where L(x) is defined above, are invariant sets with respect to the inter-
connected second order dynamic system (3) with the control law (15). The
reader can see El Kamel1 where the polar coordinates have been used. Fur-
ther, we can easily prove that ν never goes to infinity since ‖qi−O‖−r 6= 0
which imply that the proposed control law is bounded. The inter-collision
avoidance and the stabilization are resulting from theorem 2.1.

5. Simulation results

In order to test the given theoretical results, we limit our multi-agent sys-
tem to four interconnected dynamic subsystems. For i = 1, ..., 4 the gain
parameters are λi = 0.4 and ηi = 0.2, while the estimated parameters are
such that âi = 2.10−3, b̂i = 0.02, (ai)max = 0.03, (bi)max = 0.05, and the
function interconnection parameters are c = 1, a = 2.10−4 and b = 0.01.
Figure 1 shows the behavior of agents in a free environment and the char-
acter of the sliding mode control once the sliding surfaces are reached. In
figures 2, we sketch the target capturing and the stabilization/regulation
results while the obstacles are avoided with resect to the given initial con-
ditions. This confirm the proposed invariant set in reaching the objective.

6. conclusion

For a given fixed target and known non free environment, with obstacles cir-
cumscribed in a circle, the objective is reached asymptotically by the multi-
agent system in formation. The formation control was presented as a sta-
bilizing control problem including dynamic interconnection with bounded
parameters. The proposed control law can take another interconnection
function related to other behaviors of the formation. Our next investiga-
tion will concern a separate multi-agent navigation for multiple objectives.
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Fig. 1: Multi-agent stabilization in a free environment νi = 0.
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Fig. 2: Multi-agent in presence of obstacles.
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