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Abstract— This paper addresses the problem of trajectory
tracking control of an underactuated autonomous underwater
vehicle (ROV-Observer) in the horizontal and vertical plane.
The underwater vehicle is not actuated in the sway and yaw
directions, and the mass matrix is not assumed to be diagonal.
Using a reference values the dynamics of the vehicle is trans-
formed to the error one. Using backstepping technique and the
tracking error dynamics, the system states are stabilized and the
tracking errors converge to an arbitrarily small neighborhood
of zero.

I. INTRODUCTION

The problem of stabilizing an underactuated underwater at
a desired trajectory is an important issue in many offshore
applications such as, for example, solving trajectory track-
ing, path-following, path-tracking and stabilization problems.
Modern developments in the fields of control, sensing, and
communications have contributed to make very complex and
dedicated underwater robot systems a reality. This kind of
vehicle could be used in highly hazardous and unknown
environments. the autonomy and control of the robot is the
key factor to its mission success. In spite of highly coupled
and non-linear the dynamics of underwater vehicle system
in nature, decoupled linear control system strategy is widely
used for practical applications. As autonomous underwater
vehicle needs intelligent control system, it is necessary to
develop control system that really takes into account the cou-
pled and non-linear characteristics of the system. In addition,
most of the AUVs are underactuated, i.e., they have fewer
actuated inputs than the degrees of freedom (DOF), imposing
non-integrable acceleration constraints. The underwater robot
is the subject of numerous papers and thesis; ([2], [3]) and
references therein. As cited in [9], continuous time-invariant
controller was developed to achieve global exponential posi-
tion tracking for underactuated ships. However, the orienta-
tion of the ship was not controlled. By applying a cascaded
approach, a global tracking result was obtained in [13]. Based
on Lyapunov’s direct method and passivity approach, two
constructive tracking solutions were proposed in [10] for an
underwater robot. In [5], a single controller was proposed to
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solve both stabilization and tracking simultaneously. Some
related independent work includes ([11], [12]) localH∞
tracking control and differential flatness approach.
In [7], a trajectory planning and a tracking control algorithm
for an underactuated AUV moving on the horizontal plane
was studied but the drag forces model used in this work
was taken linear with respect to velocities; this confining
assumption is rectified in [8]. A new type of control law
is developed in [15] to steer an autonomous underwater
vehicle (AUV) along a desired path, it overcomes stringent
initial condition constraints that are present in a number of
path-following control strategies described in the literature.
In this paper, we study an ultraportable submarine vehicle,
belong to the family of ROVs called ROV, and is expected
for observation and exploration insubsea historical sites. The
ROV is equipped with two cameras wich will permits to Tele-
exploration in mixed reality sites (*). The ROV has a close
frame structure (see Fig.1). This vehicle is actuated with
two reversible horizontal thrustersF1x and F2x for surge
and yaw motion, and a reversible vertical thrusterF3z for
heave motion. A 150 meters cable provides electric power to
the thrusters and enables communication between the vehicle
sensors and the surface equipment (Fig.1).
In this paper, we propose a solution to overcome these prob-
lems for the tracking control of underactuated ROV moving
in horizontal and vertical plane. Controller design builds on
Lyapunov theory and backstepping techniques. The paper is
organized as the following: In section II the dynamics and
kinematics of ROV is described in a vertical plane and a
methodology is proposed to design a controller that forces
position and orientation of the ROV to track a reference
trajectory. In section III, a control design is proposed in the
horizontal plane to track a given trajectory. The theoretical
results are supported by simulations in section IV.
Assumptions : Vehicle has anXZ and Y Z-plane of sym-
metry; surge is decoupled from pitch and sway is decoupled
from roll.

II. T RACKING CONTROL IN THE VERTICAL PLANE (XZ)

A. ROV kinematics and dynamics

In this section, the kinematic and dynamic equations of the
motion of a ROV moving on the vertical plane are described.
Further details on the ROV’s dynamical modeling are given
in [1] . Using an inertial reference frameR and a body-fixed
frame Rv Fig.1. the kinematic equations of motion of the
center of mass (G) for a ROV on the verticalxz plane can



Fig. 1. Body-fixed frame and earth-fixed reference frame for the SUBSEA-
TECH ROV.

be written as:

ẋ = cθu + sθw, ż = −sθu + cθw, θ̇ = q (1)

wherex andz represent the inertial coordinates of the center
of the massG of the vehicle andu , w are the surge
and heave velocities respectively defined in the body-fixed
frame. The orientation of the vehicle is described by the
angleθ and q is its pitch(angular) velocity. We denote by:
cθ = cos θ ; sθ = sin θ. The dynamic of the ROV is
expressed by the following differential equations (2):

u̇ =(1/δ){−Jy(Xu + Xuu|u|)u− αuq(Mq + Mqq|q|)q
+(αuqzgFB + Jyg(FW − FB))sθ − (Jymz − α2

uq)wq

−αuq(Zẇ −Xu̇)wu + τ1}
ẇ =(1/mz){−(Zw + Zww|w|)w + (FW − FB)cθ + mzuq

+αuqq
2 + τ3}

q̇ =(1/δ){−αuq(Xu + Xuu|u|)u−mx(Mq + Mqq|q|)q
+(mxzgFB + αuq(FW − FB))sθ + (mxαuq − αuqmz)wq

−mx(Zẇ −Xu̇)wu + (αuq/Jy)τ1} (2)

where τ1 = F1x + F2x, τ3 = F3z and (FB , FW ) are the
buoyancy and gravity magnitudes.

B. Coordinate transformations

We introduce the following coordinate transformation to
the vehicle for getting the vehicle system matrix in to a
diagonal form:
x1 = x + αsθ, z1 = z + αcθ, u1 = u − αq, where
α = Jy/αuq. We obtain the model given by:

ẋ1 = cθu1 + sθw, ż1 = −sθu1 + cθw, θ̇ = q
u̇1 = a1u1 + a2|u1 + αq|(u1 + αq) + a3q + a4q|q|
+a5sθ + a6wq + a7wu1

ẇ = b1w + b2|w|w + b3 cos θ + b4uq + b5q
2 + (1/mz)τ3

q̇ = d1u + d2u1|u1|+ d3q + a4q|q|+ d5 sin θ + d6wq
+d7wu1 + (1/δα)τ1

(3)
whereai, di andbi depend on the ROV fixed parameters.

C. Error dynamics formulation

The aim here is to track the following reference variables:
x1r, z1r, θr, u1r, wr, qr. To this end, we define the following
tracking errors:x1e = x1 − x1r, z1e = z1 − z1r, θe = θ −
θr, u1e = u1 − u1r, we = w − wr, qe = q − qr. According
to (3) and the definition of the tracking errors we obtain the
error dynamics as the kinematic ones:

Ẋe =
(

cθ sθ
−sθ cθ

)

︸ ︷︷ ︸
Rθ

(
u1e

we

)

︸ ︷︷ ︸
Ue

+
(

cθ−cθr sθ − sθr

−sθ + sθr cθ − cθr

)

︸ ︷︷ ︸
Rθr

(
u1r

wr

)

︸ ︷︷ ︸
Ur

, θ̇e = qe

(4)

and the dynamic ones:

u̇1e =a2(u1e + u1r + α(qe + qr))|u1e + u1r + α(qe + qr)|
+a1(u1e + u1r) + a3(qe + qr) + a4(qe + qr)|qe + qr|
+a5 sin(θe + θr) + a6(weqe + wrqe + qrwe + wrqr)
+a7(weu1e + wru1e + u1rwe + u1rwr)− u̇1r

ẇe =b1(we + wr) + b2|we + wr|(we + wr)− ẇr

+b4(u1eqe + qru1e + u1rqe + u1rqr)

+b5(q2
e + 2qrqe + q2

r) + b3 cos(θe + θr) + (1/mz)τ3

q̇e =d1(u1e + u1r) + d2(u1e + u1r)|u1e + u1r|
+d3(qe + qr) + a4(qe + qr)|qe + qr| − q̇r

+d5 sin(θe + θr) + d6(weqe + wrqe + qrwe + wrqr)
+d7(weu1e + wru1e + u1rwe + u1rwr) + (1/δα)τ1

(5)

The surge motion is not directly actuated.

D. Control design

The tracking control objective has been transformed to a
stabilizing problem given by the system (4)-(5). Thus, we
consider the following first feedback law:

τ1 =αδ{τq − d1(u1e + u1r)− d2(u1e + u1r)|u1e + u1r|
−d3(qe + qr)− d4(qe + qr)|qe + qr|
−d5 sin(θe + θr)− d6(weqe + wrqe + qrwe + wrqr)
−d7(weu1e + wru1e + u1rwe + u1rwr) + q̇r}

τ3 =mz{τw − b1(we + wr)− b2|we + wr|(we + wr)
−b3 cos(θe + θr)− b4(u1eqe + qru1e + u1rqe + u1rqr)

−b5(q2
e + 2qrqe + q2

r) + ẇr} (6)

with τq and τw being considered as new controls to be
designed later. The corresponding system of errors can be
easily written as:

Ẋe = RθUe + RθrUr; θ̇e = qe

u̇1e = a1u1e + a3qe + a6(weqe + wrqe + qrwe)
+a7(weu1e + wru1e + u1rwe) + ξ
ẇe = τw; q̇e = τq

(7)



where

ξ =a2(u1e + u1r + α(qe + qr))|u1e + u1r + α(qe + qr)|
+a1u1r + a3qr + a4(qe + qr)|qe + qr|
+a5 sin(θe + θr) + a6wrqr + a7u1rwr − u̇1r

(8)

The examination of equation (7) shows that there is direct
control capability on the forward (heave) and on the ro-
tational motion of the vehicle but not on the side (surge)
motion, i.e., we can control the linear velocityw and the
corresponding errorwe as well as the angular velocityq
and the corresponding errorqe . We also observe that we
have indirect control of the side velocity errorue through the
coupling of the controlled variables in the terma6(weqe +
wrqe + qrwe + wrqr). Consistent with backstepping design
techniques for the side velocity errorue, we can choose as
an auxiliary control variable one of the controlled velocities
and, then, stabilize the latter using the corresponding actual
control variable. The same observations hold for the linear
and angular position errors: we first use the velocities as
control variables for the position, then we stabilize the
velocitieswe andqe with τw andτq andue using the coupling
term.
step 1) In order to stabilize the vector positionXe, we
assumeu1e andwe as virtual controls. We start by defining
the following Lyapunov function candidate:

V1 =
1
2
XT

e Xe ⇒ V̇1 = XT
e (RθUe + RθrUr)

We suggest as desired expressions for the virtual controls
(αu1 , αw)T = −RT

θ (KXe + RθrUr) then,

αu1 =− k(x1ecθ − z1esθ) + cθγ1 − sθγ2

αw =− k(x1esθ + z1ecθ) + sθγ1 + cθγ2

(9)

where[γ1, γ2]T = RθrUr, K = diag(k, k). The time deriva-
tive of V1 becomes

V̇1 = −XT
e KXe.

step 2)Since the components of the vectorUe are not true
controls, we need to introduce new error variablesνu1 and
νw defined as:ν = [νu1 , νw]T = [u1e − αu1 , we − αw]T .
Then, the controlled position equations are rewritten as

Ẋe = −KXe + Rθν.

In the following we would forceνw to zero, so we consider
the following Lyapunv function:

V2 =V1 +
1
2
ν2

w (10)

The time derivative ofV2 can be expressed as:

V̇2 = −XT
e [KXe −Rθν] + νw(τw + k(we + sθγ1 + cθγ2))

(11)

Setting

τw =− c1wνw − c2wν3
w − k(we + sθγ1 + cθγ2)

−(x1esθ + z1ecθ) + fw (12)

where fw is a design variable for subsequent use,c1w

and c2w are positive constants. The time derivative ofV2

becomes,

V̇2 =−XT
e KXe − c1wνw − c2wν3

w + fwνw + νu1(x1ecθ − z1esθ)
(13)

So far, the controlled subsystem of error dynamics equations
has been transformed to,

Ẋe = −KXe + Rθν
ν̇w = −c1wνw − c2wν3

w − (x1esθ + z1ecθ) + fw
(14)

Before starting the next step, we perform some manipulations
on the sway error dynamic equations. Thenν̇u1 can be
expanded to:

ν̇u1 =a1u1e + a3qe + a6(weqe + wrqe + qrwe)
+a7(weu1e + wru1e + u1rwe) + ξ

−k(u1e + cθγ1 − sθγ2)
=(a3 + a6w)qe + (a6qr + a7u1r)νw + %ν

(15)

where%ν = (a6qr + a7u1r)αw + (a1 − k)u1e

+ ξ + k(sθγ2 − cθγ1)
step 3) In order to stabilizeνu1 and θe we consider the
velocity in yaw as an auxiliary control, assuming(a3 +
a6w) 6= 0. We noteαq as a virtual control ofq. Choosing
the following Lyapunov function

V3 =V2 + (ν2
u1

+ θ2
e)/2 (16)

and taking into account Eq.(11), its time derivative is:

V̇3 =−XT
e KXe − c1wν2

w − c2wν4
w + νw[fw + a6qr + a7u1r]

+%ννu1 + [(a3 + a6w)νu1 + θe]αq

+νu1(x1ecθ − z1esθ) + νu1((a3 + a6w)αq

(17)

Settingαq = −cq((a3 + a6w)νu1 + θe), cq > 0. Then

V̇3 =−XT
e KXe − c1wν2

w − c2wν4
w

−cq((a3 + a6w)νu1 + θe)2 + νu1(x1ecθ − z1esθ)
+νw[fw + νu1(a6qr + a7u1r)] + %ννu1

(18)

step 4)The variableqe = αq is not a true control. Thus,
we have to introduce an errorνq = qe − αq in place ofαq

and we useτq to stabilize the subsystem:

ν̇u1 = (a3 + a6w)qe + (a6qr + a7u1r)νw + %ν

ν̇q = τq − α̇q

θ̇e = νq + αq

(19)



Finally, for the complete system, we choose the lyapunov
function:

V4 =V3 + ν2
q /2 (20)

and its time derivative is:

V̇4 =−XT
e KXe − c1wν2

w − c2wν4
w − cq(a6wνu1 + θe)2

+νw[fw + νu1(a6qr + a7u1r)] + νu1(x1ecθ − z1esθ)

+νq(τq + cq((a3 + a6w)2 + 1)qe + cq(a3 + a6w)ζν

+cq(a3 + a6w)(a6qr + a7u1r)νw) + %ννu1 (21)

We consider the following control law:

τq =− c1qνq − c2qν
3
q − cq((a3 + a6w)2 + 1)qe

−cq(a3 + a6w)%ν − cq(a3 + a6w)(a6qr + a7u1r)νw

(22)

with c1q and c2q are positives scalar. Then, equation (21)
becomes:

V̇4 =−XT
e KXe − c1wν2

w − c2wν4
w − cq((a3 + a6w)νu1)

2

+νw[fw + νu1(a6qr + a7u1r)]− 2cq(a3 + a6w)νu1θe

+νu1(x1ecθ − z1esθ) + %ννu1 − c1qν
2
q − c2qν

4
q − cq(θe)2

(23)

In order to deal with the quantities with uncertain sign we
conduct some algebraic manipulations. Firstly, we set

fw =− νu1(a6qr + a7u1r)− c1ν
2
u1

νw − c2ν
4
u1

νw (24)

Then, Eq (23) becomes:

V̇4 =− kx2
1e − kz2

1e − c1wν2
w − c2wν4

w − c1ν
2
u1

ν2
w

−c2ν
4
u1

ν2
w − cq((a3 + a6w)νu1)

2 − cq(θe)2

−2cq((a3 + a6w)νu1θe) + νu1(x1ecθ − z1esθ)

−c1qν
2
q − c2qν

4
q + %ννu1 (25)

In the above expression, we remark that the last three terms
have uncertain signs. For the analysis we will use the Young’s
inequality, with the quantitiesεi, i = 1....7 as positive
constants, we obtain:

(x1ecθ − z1esθ)νu1 ≤
1

4ε1
|x1e|2 +

1
4ε1

|z1e|2 + 2ε1|νu1 |2

2cq(a3 + a6w)νu1θe ≤ 1
ε2

a2
6|w|2|θe|2 +

1
ε2

a2
3|θe|2

+2ε2c
2
q|νu1 |2 (26)

Now, we will expand the expression of%ννu1 , we obtain the

following expression,

(a6qr + a7u1r)αwνu1 ≤
(a6)2

4ε3
(k2|x1e|2 + k2|z1e|2 + |γ1|2

+|γ2|2)|qr|2 + 2ε3|νu1 |2

+
(a7)2

4ε4
(k2|x1e|2 + k2|z1e|2 + |γ1|2

+|γ2|2)|u1r|2 + 2ε4|νu1 |2

(a1 − k)u1eνu1 ≤
(a1 − k)2

4ε5
|u1e|2 + ε5|νu1 |2

k(sθγ2 − cθγ1)νu1 ≤
k2

4ε6
(|γ1|2 + |γ2|2) + 2ε6|νu1 |2

(27)

ξνu1 ≤
1

4ε7
|ξ|2 + ε7|νu1 |2 (28)

Angular rates and velocities are considered to have maximum
values and they verify:
|u1|2 ≤ u2

1,max, |w|2 ≤ w2
max, |u1e|2 ≤ u2

1e,max

|qr|2 ≤ q2
r,max, |wr|2 ≤ w2

r,max, |u1r|2 ≤ u2
1r,max

Taking into account the results from (25) to (28), the time
derivative ofV4 in (19), becomes:

V̇4 ≤− [k − 1
4ε1

− k2(a6)2

4ε3
q2
r,max −

k2(a7)2

4ε4
u2

1r,max]x2
1e

−[k − 1
4ε1

− k2(a6)2

4ε3
q2
r,max −

k2(a7)2

4ε4
u2

1r,max]z2
1e

−(cq − 1
ε2

β2
3 −

1
ε2

β2
6w2

max)θ2
e − c1qν

2
q − c1wν2

w

−(c1ν
2
w − 2ε1 − 2ε2c

2
3 − 2ε3 − 2ε4 − ε5 − 2ε6 − ε7)ν2

u1

−cqβ
2
6w2

maxν2
u1

+ µ1 (29)

where

µ1 =(γ2
1,max + γ2

2,max)(
(a6)2

4ε3
q2
r,max +

(a7)2

4ε4
u2

1r,max +
k2

4ε6
)

+
1

4ε7
|ξ|2

(30)

The coefficientc1ν
2
w − ε must be positive, whereε =

2ε1 + 2ε2c
2
3 + 2ε3 + 2ε4 + ε5 + 2ε6. Consequently|νw| must

be above
√

ε
c1

, which holds for largec1 and smallε. So,

from the inequality, we obtain:

V̇4 ≤− k1x
2
1e − k1z

2
1e − k2θ

2
e − c1wν2

w − k2ν
2
u1
− c1qν

2
q

−(c1ν
2
w − ε)ν2

u1
+ µ1 (31)

k1 =k − 1
4ε1

− k2(a6)2

4ε3
q2
r,max −

k2(a7)2

4ε4
u2

1r,max > 0

k2 =cq − 1
ε2

a2
3 −

1
ε2

2

6

w2
max > 0

k3 =cqβ
2
6w2

max

(32)

From Eq. (31) it is:

V̇4 ≤ −k1x
2
1e− k1z

2
1e− k2θ

2
e − c1wν2

w− k3ν
2
u1
− c1qν

2
q +µ1



By using the comparison lemma [14], the previous equation
leads to:

V̇4 ≤ −2$1V4 + µ ⇒ V4(t) ≤ V4(0)e−2$1t + (µ1/2$1)

where $1 = min{k1, k2, k3, c1w, c1q}. If we define ξ =
[xe, ze, θe, νu, νw, νq]T , then, considering equation (20) it is
2V4 = ‖ξ‖2 we conclude

‖ξ(t)‖ ≤‖ξ(0)‖e−$1t +
√

µ1

$1
(33)

Eq. (33) means that the states of the error dynamics remain
in a small, bounded set around zero, which can be reduced
using an appropriate combination of the controller gains. At
this result we arrived using (6) along with (12) and (22).

III. T RACKING CONTROL IN THE LATERAL PLANE (XY )
A. ROV kinematics and dynamics

The marine vehicle has two back thrusters for moving
along the surge and the yaw degree of freedom, but no
side (lateral) thruster for moving along the sway [1]. The
kinematic and dynamic equations of motion are analytically
written as:

ẋ =cψu− sψv, ẏ = sψu + cψv, ψ̇ = r

u̇ =(1/δ){−Xuu−Xuu|u|u + (Jymy + αuqαvp)vr + τ1}
v̇ =(1/δ){−Yvv − Yvv|v|v − (Jxmx + αvpαuq)ur}
ṙ =(1/Jz){−Nrr −Nrr|r|r − (Xu̇ − Yv̇)uv + τ2}

(34)

wherex andy represent the inertial coordinates of the center
mass of the vehicle andu , v are respectively the surge
and sway velocities in the body-fixed frame. The orientation
of the vehicle is described by the angleψ and r is its
yaw(angular) velocity.

B. Error dynamics formulation

The aim here is to track the following reference variables:
xr, yr, ψr, ur, vr, rr. To this end, we define the following
tracking errors:

Xe =
(

xe = x− xr

ye = y − yr

)
, Ue =

(
ue = u− ur

ve = v − vr

)

ψe = ψ − ψr, re = r − rr.
According to (3) and the definition of the tracking errors we
obtain the error dynamics as the kinematic ones:

Ẋe =
(

cψ −sψ
sψ cψ

)

︸ ︷︷ ︸
Rψ

(
ue

ve

)

︸ ︷︷ ︸
Ue

+
(

cψ−cψr −sψ + sψr

sψ − sψr cψ − cψr

)

︸ ︷︷ ︸
Rψr

(
ur

vr

)

︸ ︷︷ ︸
Ur

; ψ̇e = re

(35)

and the dynamic ones:

u̇e =α1(ue + ur)− α2|ue + ur|(ue + ur)
−α3(vere + rrve + vrre + vrrr)− u̇r + τ1

v̇e =− β1(ve + vr)− β2(ve + vr)|ve + vr|
−β3(uere + urre + rrue + urrr)− v̇r

ṙe =− γ1(re + rr)− γ2(re + rr)|re + rr|
−γ3(ueve + urve + vrue + urvr)u− ṙr + τ2

(36)

whereαi, βi and γi depend on the ROV fixed parameters.
When moving in the horizontal plane, the ROV is not
actuated in the sway direction.

C. Control design

The tracking control objective has been transformed to a
stabilizing problem given by the system (4)-(5). Thus, we
consider the following first feedback law:

τu =α1(ue + ur)− α2|ue + ur|(ue + ur)
−α3(vere + rrve + vrre + vrrr)− u̇r + τ1

τr =− γ1(re + rr)− γ2(re + rr)|re + rr|
−γ3(ueve + urve + vrue + urvr)u− ṙr + τ2

(37)

with τu and τr being considered as new controls to be
designed later. The corresponding system of errors can be
easily written as:

Ẋe = RψUe + RψrUr; ψ̇e = re

u̇e = τu

v̇e = −β1v − β2v|v| − β3(uere + urre + rrue + urrr)− v̇r

ṙe = τr

(38)
The examination of equation (38) shows that there is direct
control capability on the forward (surge) and on the rotational
motion of the vehicle but not on the side (sway) motion, i.e.,
we can control the linear velocityu and the corresponding
errorue as well as the angular velocityr and the correspond-
ing errorre . We also observe that we have indirect control
of the side velocity errorve through the coupling of the con-
trolled variables in the termβ3(uere +urre + rrue +urrr).
Consistent with backstepping design techniques for the side
velocity error ve, we can choose as an auxiliary control
variable one of the controlled velocities and, then, stabilize
the latter using the corresponding actual control variable. The
same observations hold for the linear and angular position
errors: we first use the velocities as control variables for the
position, then we stabilize the velocitiesue and re with τu

andτr andve using the coupling term.
step 1) In order to stabilize the vector positionXe, we
assumeue and ve as virtual controls. We start by defining
the following Lyapunov function candidate:

V1 =
1
2
XT

e Xe ⇒ V̇1 = XT
e (RψUe + RψrUr)



We suggest as desired expressions for the virtual controls
Ue = (αu, αv)T = −RT

ψ [KXe + Rψr
Ur] then,

αu =− k(xecψ + yesψ)− cosψδ1 − sinψδ2

αv =− k(−xesψ + yecψ) + sin ψδ1 − cos ψδ2

α̇u =− k(ue + cos ψδ1 + sin ψδ2)
α̇v =− k(ve − sin ψδ1 + cosψδ2)

(39)

where[δ1, δ2]T = RψrUr, K = diag(k, k). The time deriva-
tive of V1 becomes

V̇1 = −XT
e KXe.

step 2)Since the components of the vectorUe are not true
controls, we need to introduce new error variables$u and
$v defined as:$ = [$u, $v]T = [ue−αu, ve−αv]T . Then,
the controlled position equations are rewritten as

Ẋe =−KXe + Rψ$ (40)

In the following we would force$u to zero, so we consider
the following Lyapunv function:

V2 =V1 + ($2
u)/2 (41)

The time derivative ofV2 can be expressed as:

V̇2 =−XT
e KXe + Rψ$ + $u(τu − α̇u) (42)

Setting

τu =− c1u$u − c2u$3
u + α̇u − xecψ − yesψ + fu (43)

wherefw is a design variable for subsequent use, the time
derivative ofV2 becomes,

V̇2 =−XT
e KXe − c1u$2

u − c2u$4
u

+fu$u + $v(ye cos ψ − xe sin ψ) (44)

wherec1w and c2w are positive constants. So far, the con-
trolled subsystem of error dynamics equations has been
transformed to,

Ẋe = −KXe + Rψ$
$̇u = −c1u$u − c2u$3

u + α̇u − xecψ − yesψ + fu

(45)
Before starting the next step, we perform some manipulations
on the sway error dynamic equations. Then$̇v can be
expanded to:

$̇v =− β3ure − β3rr$u + %v (46)

where

%v =k(cψδ2 − sψδ1) + (k − β1)ve − β2|v|v − β3urrr − v̇r

−β1vr + β3rr(kxecψ + kyesψ + cos ψδ1 + sin ψδ2)
(47)

step 3) In order to stabilize$v andψe we consider the ve-
locity in yaw as an auxiliary control. Choosing the following
Lyapunov function

V3 =V2 + ($2
v + ψ2

e)/2 (48)

and taking into account Eq.(48), its time derivative is:

V̇3 =−XT
e KXe − c1u$2

u − c2u$4
u + [fu − β3rr$v]$u

+$v(ye cosψ − xe sin ψ) + (ψe − β3u$v)αr + %v$v

(49)

Settingαr = −cr(ψe − β3u$v), cr > 0. Then

V̇3 =−XT
e KXe − c1u$2

u − c2u$4
u + [fu − β3rr$v]$u

+$v(ye cosψ − xe sin ψ)− cr(−β3u$v + ψe)2 + %v$v

(50)

step 4)The variablere = αr is not a true control. Thus, we
have to introduce an error$r = re −αr in place ofαr and
we useτr to stabilize the subsystem:

$̇v = −β3ure − β3rr$u + %v

$̇r = τr − α̇r

ψ̇e = $r + αr

(51)

Finally, for the complete system, we choose the lyapunov
function:

V4 =V3 + $2
r/2

(52)

and its time derivative is:

V̇4 =−XT
e KXe − c1u$2

u − c2u$4
u + [fu − β3rr$v]$u

+$v(ye cos ψ − xe sin ψ)− cr(ψe − β3u$v)2 + %v$v

+$r(τr + cr((β3u)2 + 1)re − crβ3u%v + crβ
2
3urr$u)

(53)

We consider the following control law:

τr =− c1r$r − c2r$
3
r − cr((β3u)2 + 1)re + crβ3u%v

−crβ
2
3urr$u (54)

with c1r and c2r are positives scalar. Then, equation (53)
becomes:

V̇4 =−XT
e KXe − c1u$2

u − c2u$4
u + [fu − β3rr$v]$u

+$v(ye cos ψ − xe sin ψ)− cr(ψe − β3u$v)2 + %v$v

−c1r$
2
r − c2r$

4
r

(55)

In order to deal with the quantities with uncertain sign we
conduct some algebraic manipulations. Firstly, we set

fu =β3rr$v − c3$
2
v$u − c4$

4
v$u (56)

Then, Eq (55) becomes:

V̇4 =−XT
e KXe − c1u$2

u − c2u$4
u − c3$

2
v$2

u − c4$
4
v$2

u

−c1r$
2
r − c2r$

4
r + $v(ye cos ψ − xe sin ψ)− crβ

2
3u2$2

v

−crψ
2
e + 2crβ3uψe$v + %v$v

(57)

In the above expression, we remark that the last three terms
have uncertain signs. For the analysis we will use the Young’s



inequality, with the quantitiesεi, i = 1....7 as positive
constants, we obtain:

$v((ye cos ψ − xe sin ψ)) ≤|$v|2
4ε1

+ ε1|xe|2

+ε1|ye|2

$v(kcψδ2 − ksψδ1) ≤|$v|2
4ε2

+ ε2k
2|δ1|2

+ε2k
2|δ2|2

2crβ3uψe$v ≤|$v|2
ε4

+ε4c
2
rβ

2
3 |ψe|2|u|2

−β2|v|v$v ≤β2v
2|$v|

≤|$v|2
4ε5

+ ε5β
2
2v4

−(β3urrr + v̇r + β1vr)$v ≤|$v|2
4ε6

+ ε6|ξ|2

(k − β1)ve$v ≤|$v|2
ε7

+ε7(k − β1)2|ve|2
(58)

Angular rates and velocities are considered to have
maximum values and they verify:

• |rr|2 ≤ r2
r,max, |u|2 ≤ u2

max

• |ve|2 ≤ v2
e,max, |v|4 ≤ v4

max

• |δ1|2 ≤ δ2
1,max, |δ2|2 ≤ δ2

2,max

Taking into account the results from (58) , the time derivative
of V4 in (57), becomes:

V̇4 ≤− [k − ε1 − ε3k
2r2

r,max]x2
e − [k − ε1 − ε3k

2r2
r,max]y2

e

−$2
v[c3$

2
u −

1
2ε1

− 1
2ε2

− 1
2ε3

− 1
ε4
− 1

4ε5
− 1

4ε6
− 1

4ε7
]

−c1u$2
u − c2u$4

u − c4$
4
v$2

u − c1r$
2
r − c2r$

4
r

−crβ
2
3u2

max$2
v − [cr − ε4c

2
rβ

2
3u2

max]ψ2
e + µ2

(59)

where

µ2 =[ε2k2 + ε3k
2r2

r,max]δ2
1,max + [ε2k2 + ε3k

2r2
r,max]δ2

2,max

+ε7(k − β1)2v2
e,max + ε6|ξ|2 + ε5β

2
2v4

max

(60)

The coefficientc3$
2
u− 1

2ε1
− 1

2ε2
− 1

2ε3
− 1

ε4
− 1

4ε5
− 1

4ε6
− 1

4ε7
must be positive, whereε = 1

2ε1
+ 1

2ε2
+ 1

2ε3
+ 1

ε4
+ 1

4ε5
+

1
4ε6

+ 1
4ε7

. Consequently|$u| must be above
√

ε
c3

, which

holds for largec3 and smallε. So, from the inequality, we
obtain:

V̇4 =− k1x
2
e − k1y

2
e − k2ψ

2
e − k3$u2 − k4$

2
v − k5$

2
r + µ2

(61)

where k1 = k − ε1 − ε3k
2r2

r,max > 0, k2 = cr −
ε4c

2
rβ

2
3u2

max > 0,

k3 = c1u > 0, k4 = crβ
2
3u2

max > 0, k5 = c1r > 0. By using
the comparison lemma [14], the previous equation leads to:

V̇4 ≤ −2$2V4 + µ2 ⇒ V4(t) ≤ V4(0)e−2$2t + (µ2/2$2)

where $2 = min{k1, k2, k3, c1w, c1q}. If we define ξ =
[xe, ze, θe, νu, νw, νq]T , then, considering equation (52) it is
2V4 = ‖ξ‖2 we conclude

‖ξ(t)‖ ≤‖ξ(0)‖e−$2t +
√

µ2

$2
(62)

Eq. (62) means that the states of the error dynamics remain
in a small, bounded set around zero, which can be reduced
using an appropriate combination of the controller gains. At
this result we arrived using (37) along with (43) and (54).

IV. SIMULATION RESULTS

In this section, we give a numerical simulation to illustrate
our theoretical results. Before starting, we will present the
system parameter values (IS units) used for simulations.

The reference trajectory is described by the following

TABLE I

RIGID BODY AND HYDRODYNAMIC PARAMETERS

Parameter Symbol Value
mass m 10.84

Added mass in surge Xu̇ -1.0810
Added mass in sway Yv̇ -0.3848
Added mass in heave Zẇ -0.3.848
Added inertia in roll Kṗ 0
Added inertia in yaw Nṙ -0.0075
Added inertia in pitch Mq̇ -0.0075

Surge linear drag Xu 0.9613
sway linear drag Yv 2.4674
heave linear drag Zw 2.4674
yaw linear drag Nr 5.3014× 10−6

Surge linear drag Mq 5.3014× 10−6

Surge quadratic drag Xuu 4.4674
Sway quadratic drag Yvv 5.989
heave quadratic drag Zww 5.989
Quadratic yaw drag Nrr 0.1011
Quadratic pitch drag Mqq 0.1011

equations

xr = yr = zr = hr
t5

t5 + (tf − t)5

wherehr is the desired altitude andtf is the final time. The
simulation results are obtained with these gains:
k = 0.1, c1u = 10, c2u = 10, c1w = 10, c2w = 10, c1q = 1,
c2q = 1, c1r = 1, c2r = 1, cq = 10, cr = 10, hr = 10.
In Fig (4,5,8,9), the reference and the actual trajectory of
the ROV in the inertial space are displayed. We see the
convergence of the center of the massG trajectory to the
desired one. The error in the linear and angular velocities
which converge are depicted in Fig (3,7). In Fig (2,6), we
can see that the inertial position errors and the Euler angles
errors in a small neighborhood of zero.
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Fig. 3. The error in the linear and
angular velocities in theXZ plane

0 10 20 30 40 50 60
0

2

4

6

8

10

12

t(s)

 

 
x
xr

Fig. 4. The actual trajectory and
the reference trajectory in theXY
plane,

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

t(s)

 

 
z
zr

Fig. 5. The actual trajectory and
the reference trajectory in theXY
plane,

0 10 20 30 40 50 60
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t(s)

po
si

tio
n 

er
ro

rs

 

 
ex
ey
epsi

Fig. 6. the inertial position errors
and the Euler angles errors in the
XY planE

0 10 20 30 40 50 60
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

t(s)

ve
lo

ci
tie

s 
er

ro
rs

 

 
eu
ev
er

Fig. 7. The error in the linear and
angular velocities in theXY plane
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V. CONCLUSIONS

In this paper, the problem of trajectory tracking control for
underactuated ROV on the vertical and horizontal plane was

addressed. In the first section, the kinematic and dynamic on
the vertical plane are described. Given a reference trajectory
to be followed by the ROV, using these reference values,
the dynamic of the ROV was transformed to the error one.
Backstepping techniques were utilized to stabilize the above
system and force the tracking error to a neighborhood about
zero. In the second section The control problems of tracking
on the horizontal plane for a ROV has be considered. A
time-varying feedback control laws were derived using a
combined integrator backstepping and averaging approach.
The trajectories of the controlled ROV were proved to
converge to the reference trajectory.
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