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Abstract—This paper addresses the problem of trajectory solve both stabilization and tracking simultaneously. Some
tracking control of an underactuated autonomous underwater related independent work includes ([11], [12]) locHL,
vehicle (ROV-Observer) in the horizontal and vertical plane. tracking control and differential flatness approach.

The underwater vehicle is not actuated in the sway and yaw In 17 . | . d i | alaorith
directions, and the mass matrix is not assumed to be diagonal. n [7], a trajectory planning an ‘_"‘trac Ing Com_ro algorithm
Using a reference values the dynamics of the vehicle is trans- for an underactuated AUV moving on the horizontal plane
formed to the error one. Using backstepping technique and the was studied but the drag forces model used in this work
tracking error dynamics, the system states are stabilized and the \was taken linear with respect to velocities; this confining
tracking errors converge to an arbitrarily small neighborhood assumption is rectified in [8]. A new type of control law
of zero. is developed in [15] to steer an autonomous underwater
I. INTRODUCTION vehicle (AUV) along a desired path, it overcomes stringent

e initial condition constraints that are present in a number of
The problem of stabilizing an underactuated underwater g tollowing control strategies described in the literature.

a desired trajectory is an important issue in many offShorg, s naner, we study an ultraportable submarine vehicle,
applications such as, for example, solving trajectory traCkse|ong 1o the family of ROVs called ROV, and is expected
ing, path-following, path-tracking and stabilization problems¢, oseryation and exploration insubsea historical sites. The
Modern Qevglopments in the fields of control, sensing, a QV is equipped with two cameras wich will permits to Tele-
communications have contributed to make very complex angd joration in mixed reality sites (*). The ROV has a close
dedicated underwater robot systems a reality. This kind ¢fy e structure (see Fig.1). This vehicle is actuated with
vehicle could be used in highly hazardous and unknow&vo reversible horizontal thrusters,, and F,, for surge
environments. the autonomy and control of the robot is th nd yaw motion, and a reversible vertical thrusir for

key factor' to its mission Success. In spite of highly coupleflgaye motion. A 150 meters cable provides electric power to
gnd non-linear the dynamlcs of underwater vehlclg sy;teme thrusters and enables communication between the vehicle
in nature, decoupled linear control system strategy is widelansors and the surface equipment (Fig.1).

use_d for practi_cal a_pplications. As autono_m_ous underwatﬁ{ this paper, we propose a solution to overcome these prob-
vehicle needs intelligent control system, it is necessary Qs for the tracking control of underactuated ROV moving
develop control system that really takes into account the ol o rizontal and vertical plane. Controller design builds on
pled and non-linear characteristics of thg system. In add't'oﬂyapunov theory and backstepping techniques. The paper is
most of the AUVs are underactuated, i.e., they have fewgfqanizeq as the following: In section Il the dynamics and
actuated inputs than the degrees of freedom (DOF), imposipghe matics of ROV is described in a vertical plane and a
pon—lntegrgble acceleration constraints. The qnderwater mt]‘%thodology is proposed to design a controller that forces
is the subject of numerous papers and thesis; ([2], [3]) anghsition and orientation of the ROV to track a reference
references therein. As cited in [9], continuous t'me"nva”ar}}ajectory. In section 11l a control design is proposed in the

controller was developed to achieve global exponential POSiyi;ontal plane to track a given trajectory. The theoretical
tion tracking for underactuated ships. However, the orientasq its are supported by simulations in section IV

tion of the ship was not controlled. By applying a Cascadeﬂssumptions - Vehicle has anXZ and Y Z-plane of sym-

approach, a global tracking result was obtained in [13]. Bas‘?ﬂetry; surge is decoupled from pitch and sway is decoupled
on Lyapunov’s direct method and passivity approach, WBom roll.

constructive tracking solutions were proposed in [10] for an
underwater robot. In [5], a single controller was proposed to
[l. TRACKING CONTROL IN THE VERTICAL PLANE (X Z)
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C. Error dynamics formulation

The aim here is to track the following reference variables:
T1ry 217, O, w1, Wy, . TO this end, we define the following
tracking errorsxi. = 1 — T1r, 21e = 21 — 217, B = 0 —

Or, Ure = Uy — Uy, We =W — Wy, e = ¢ — Gp. ACCOTding
to (3) and the definition of the tracking errors we obtain the
error dynamics as the kinematic ones:

. cd sO Ule
Xe_(—sQ cH)(we)
—_——— ——

r Ro Ue
cf_ch,  sO— sb, Uy :
+ § ! I 3 0, = Ge
—s0 + 56, B — b, Wy
N——
Fig. 1. Body-fixed frame and earth-fixed reference frame for the SUBSEA- R, Ur
TECH ROV. 4)

and the dynamic ones:

be written as: .
Ule :a2(ule + uyr + OZ(Qe + qr))lule + w1, + OZ(Qe + qr)‘

i = chu + sbw, 3 = —sOu+ cw, § = g Q) a1 (ure + uir) + az(ge + qr) + as(qe + ¢r)|ge + qv|

wherex andz represent the inertial coordinates of the center a5 sin(0c + 07) + ag (wege + wrge + grtve + wrgy)

of the massG of the vehicle andu , w are the surge tar(wetre + wrute + Upwe + urrwr) — Uiy
and heave velocities respectively defined in the body-fixed )
frame. The orientation of the vehicle is described by the “e =bi(we +wr) + ba|we + wr|(we +wy) — 1wy
angled and g is its pitch(angular) velocity. We denote by: +ba(u1eqe + @rie + UirGe + U1rqr)
cd = cosf; sl = sir_l 0. T_he dynamic of.the ROV is +05(¢% + 2qrqe + ¢2) + bgcos(B. + 0,.) + (1/m.)7s
expressed by the following differential equations (2):

Ge =dy(ure + uiy) + do(ute + ury)|uie + Uiy

u=(1/5){—-J,( X, + Xuu|u))u — oyg (M, + M, .
(/0= ) oM+ Myglal)g +d3(ge + qr) + aa(ge + @r)qe + v — Gr

wizgFs + Jyg(Fw — Fg))s — (Jym, — o,
+(a ng B+ yg( w B))S ( ym auq)wq +d5Sin(95+9r)+d6(weqe+que+qrwe+qur)

_ 7. _X.
- g (Zy, a)wu + 71} +d7(Wwett1e + Wrtt1e + U1, We + urrwy) + (1/da)m
w=(1/m){—(Zyw + Zww|w|))w+ (Fw — Fg)ch + m,uq (5)

2
+Qugq” + 73} The surge motion is not directly actuated.
G =(1/0){—aug(Xu + Xuulul)u — ma(My + Myqlql)q

D. Control design
+(MmazgFp + oug(Fw — FB))sO + (Mgatug — Qtugm)wy

The tracking control objective has been transformed to a
—my(Zy — Xa)wu + (oug/Jy)T1} (2)  stabilizing problem given by the system (4)-(5). Thus, we

where 7, — Fi, + Fyu, 73 = Fy. and (Fp, Fiy) are the consider the following first feedback law:

buoyancy and gravity magnitudes. 71 =ad{1y — di(U1e + u1r) — do(tie + U1y)|Uie + Uty ]
_d?)(QE + QT) - d4(Qe + QT)|Qe + QT|
—dssin(0e + 0;) — de(weGe + WrGe + Grwe + WrGr)

*d7(weule + Wrlie + U1rWe + ulrwr) + QT}

B. Coordinate transformations

We introduce the following coordinate transformation to
the vehicle for getting the vehicle system matrix in to a
diagonal form:

1 = xz+ash,z1 = z+ ach,u; = u — ag, where
a= J,/a.. We obtain the model given by:

T3 =m {1y — b1 (we + wy) — ba|we + Wi |(we + w;)
—bgcos(fc + 0;) — ba(ureqe + grute + uirge + u1rqr)
~b5(a2 + 2arge + ¢7) + W, } (6)

with 7, and 7,, being considered as new controls to be

designed later. The corresponding system of errors can be
easily written as:

T1 = cluy + sbw, z; = —sbu; + cHw, 0 = q

Uy = ajuy + azluy + aql(uy + aq) + azq + asqlq|
+ass0 + agwq + arwu

W = byw + ba|w|w + b3 cos O + byuq + bsq* + (1/m,)73

¢ = diu + dyus|ur| 4 d3q + aaq|q| + ds sin 6 + dgwq Xe = RoUe + Ry, Uy; 6 = qe
+drwuy + (1/8a)m; e = artne + asqe + d6(Wege + Wrge + grwe) 7y
(3) +a7(weule + wrie + ulrwe) + 5

wherea;, d; andb; depend on the ROV fixed parameters. We = Ty} e = Tq



where Setting

k(we + s0v1 + cby2)
(12)

3
Tw = — ClwVw — C2wlVy, —

— (71680 + z1.00) + fu

g :a2(ule + uy, + a(QG + QT))‘ule + uy,r + a(QG + QT)‘
+ai1ur, + asqr + a4((Je + QT)‘qe + (Ir|
+as sin(f + 0,.) + agw,q, + aruiw, —

Uiy where f,, is a design variable for subsequent usg,

and ¢y, are positive constants. The time derivative 16f
ecomes,

(8)

The examination of equation (7) shows that there is direC
control capability on the forward (heave) and on the roy, — — XTKX,
tational motion of the vehicle but not on the side (surge)

motion, i.e., we can control the linear velocity and the

corresponding errow, as well as the angular velocity —So far, the controlled subsystem of error dynamics equations
and the corresponding errgt . We also observe that we has been transformed to,

have indirect control of the side velocity erros through the
coupling of the controlled variables in the temp(w.qg. +
wrqe + ¢rwe + wyq,-). Consistent with backstepping design
techniques for the side velocity errar, we can choose as Before starting the next step, we perform some manipulations
an auxiliary control variable one of the controlled velocitien the sway error dynamic equations. Thep can be

— Cle/g) + fwlw + Vuy (2160 — 21.50)
(13)

— ClwVw

X.=—-KX,+ Ryv

Uy = —ClwVw — CowVs, — (X180 + 210¢0) + fu (14)

and, then, stabilize the latter using the corresponding actugtpanded to:
control variable. The same observations hold for the linear
and angular position errors: we first use the velocities as

control variables for the position, then we stabilize the

velocitiesw, andg, with 7, andr, andu. using the coupling
term.
step 1) In order to stabilize the vector positioX., we

assumeu;. andw, as virtual controls. We start by defining

the following Lyapunov function candidate:

1 .
Vi = 5XeTXe = Vi = XT(RyU. + Ry, U,)

Vuy =01U1e + a3Gc + a6(WeGe + WrGe + Grwe)
Far(Wete + Wrttie + ur,we) +§
—k(ute + cBy1 — s072)
=(a3 + asw)qe + (asqr + azui)Vw + 00
(15)

whereg, = (a6QT + a?“lr)aw + (al - k)ule
+ &+ k(sOy2 — ch71)

We suggest as desired expressions for the virtual contrgiep 3) In order to stabilizer,, and ¢. we consider the

(uys )T = —RE(K X, + Ry, U,) then,

Qg = — k(2100 — 21050) + cly1 — s0v2
y = — k(x1e50 + z1.00) + sO7y1 + Oy
)

wheréy;, y2]T = Ry, U,, K = diag(k, k). The time deriva-
tive of V; becomes

Vi=-XT'KX..

step 28Bince the components of the vectdy are not true
controls, we need to introduce new error variablgs and
v, defined asy = [vy,, Vw]? = [Uie — Quy, We — aup]”.

Then, the controlled position equations are rewritten as

X, =—-KX.+ Ryv.

In the following we would forcev,, to zero, so we consider
the following Lyapunv function:

1
Vo =Vi + 5%%

The time derivative ofl’; can be expressed as:

(10)

Vs

= —X?[KXe — Rov] + vy (T + k(we + $671 + cb7y2))
(11)

velocity in yaw as an auxiliary control, assumirgs; +
agw) # 0. We notea, as a virtual control of;. Choosing
the following Lyapunov function

Vs =Vo+ (v, +62)/2 (16)

and taking into account Eq.(11), its time derivative is:

Vs

- XTKX, - ch,,ui — czwuﬁ, + Vo fw + asqr + azuy,]
+ouvu, + [(as + agw)vy, + Oe]ag

+vy, (T1e00 — 21650) + vy, ((as + asw)ay,

(17)

Settingay, = —¢,((as + agw)vy, + 0e), ¢g > 0. Then

Vs

— XgKXe — clwyi — CQwVﬁ)
—cq((az + agw)vy, + 96)2 + Uy, (X100 — z1.50)
+Vw [fu; + Vu1 (116% + a7u1r)} + Quyul
(18)
step 4)The variableg. = oy is not a true control. Thus,
we have to introduce an errof, = g. — «, in place of,
and we user, to stabilize the subsystem:

Du1 = (Cl3 + aGw)qe + (a6qr + a?“lr)yw + 0u
Vg =Tq — Q4
O =vq + oy

(19)



Finally, for the complete system, we choose the lyapundollowing expression,
function: (ag)?

(a6QT + a7ulr)aw1/u1 < (k2|xle|2 + k2|Zle|2 + |’71|2

463
_ 2
Va=Vatvy/2 (20) el lar | + 2eslv,
o L (a7)* o 2 2 2 2
and its time derivative is: +H(k |Z1e]” 4+ k7[21] + [
’ T 2 4 2 +|72‘2)|U1T|2+264|Vu1|2
Vi=— X, KX, — ciwly, — CowVy — Ccqlagwry, + 0.) (a1 — k)2 , ,
+Vw[fuw + Vuy (a6Gr + azury)] + v, (21600 — 21.50) (a1 = K)wner, < 4es iael™+ sl
vy (14 + co((az + agw)? + 1)qe + cy(as + agw)C k2
e o ; k(5072 — Oy v, <7—(ml* + [el®) + 2e6|va, [
+cqlas + agw)(asqr + aruiy)vw) + 0uvu, (21) 4es
(27)
We consider the following control law: 1
é.yul S7|£|2 Jre7|Vu1|2 (28)
467
Ty = — Clqlg — cng/j — eq((as + agw)? + 1)ge Angular rates and Ve.|0.CItIeS are considered to have maximum
values and they verify:
—Cq(as + agw)oy — cqlaz + agw)(asgr +aruar)Vw 2 <2 T2 < w2 urel? <l e

22
( ) |QT|2 < qg,mam’ |w7’|2 < waz",maz’ |u17“‘2 < Ulr maz

Taking into account the results from (25) to (28), the time
with ¢14 and ¢y, are positives scalar. Then, equation (21}erivative ofV; in (19), becomes:

becomes: . 1 k2(ag)? k2 (ar)? )
V4 S - - - qr,max - ulr,mam]zle
. T 9 4 2 461 463 464
Vi=— X, KXc — cruly, — Couwly — ¢q((a3 + agw)vy,) 1 k(a)? , K2(a7)? )
+vw[fuw + Vu, (a6Gr + azuir)] — 2¢q(az + agw)vy, Oe —lk- E B 4es rmaz ~ dey 17"max]216
-V, (2160 — 2150) + 01y, — C1gV2 — CogVt — co(6)? 1 1
b ¢ N vo 1a a q(zg) _(Cq - gﬂg - a gw?naz)ez - Cqug B ClU)V'LZU

—(611/,3, — 2€1 — 2628% — 2€3 — 264 — €5 — 266 — 67)1/21
In order to deal with the quantities with uncertain sign we g2, V2, + (29)
conduct some algebraic manipulations. Firstly, we set

where
2 2 2
fw =" Yu (a6qr + &7U1T) o ClVill/w o C2U31Vw (24) H1 :(’7% max + '7% mam)( (aﬁ) Emam + <a7) u?r max + ki)
’ ’ deg ’ 4ey ’ 4eg
1
Then, Eq (23) becomes: 4—4—\§|2
€7
) 30
Vi =—ka?, — k22, — croV? — cowl — 011/311/3 30)
9 The coefficientc;v2 — ¢ must be positive, where =

—eavy, vy = cq((as + agw)vy, ) — cq(0e)

2€1 +2€2¢3 + 2€3 + 2¢4 + €5 + 2¢6. Consequentlyy,,| must
_QCQ((GS + aﬁw)yu1 96) + Vg (xlece - 21689)

be above, /=, which holds for largec; and smalle. So,

2 4 cr’
—ClqVq — C2qVq T OV (25)  from the inequality, we obtain:
’ _ 2 2 2 _ 2 2 2
In the above expression, we remark that the last three term&* = klfle 121216 kalc = eruwvyy = kavy, = c1q74
have uncertain signs. For the analysis we will use the Young's —(c1vy, — vy, + (31)
inequality, with the quantities;, i = 1....7 as positive
in: L kR(ag)’ k2 (ar)?
constants, we obtain: foy =k — — — a6 p _ ka7 o S0
461 463 r,max 464 1r,max
9 Oy, < 2, 1 242 2 La 1%
(l‘lec — Z1eS )Vul _E|xle| + E|Zle| + 61|l/u1| kz =Cq — gag) — g Wopax = 0
1 1 2.2
2¢4(az + agw)vy, 0. <—ad|w|*|0.)* + —a3|0.|* ks =cqB5Winaa
€2 €2
9 9 (32)
+2e2¢ |V, | (26)

From Eqg. (31) it is:

Now, we will expand the expression gfv,,,, we obtain the Vi < —kia?, — k127, — ko602 — c1v2 — kv, — Crgv + 1



By using the comparison lemma [14], the previous equation Ve = — 1 (Ve + vp) — B2(ve + vp)|ve + vr
leads to: —B3(UeTe + UpTe + Trlie + UpTy) — Dy
‘./4 < 2oVu+pu= V4(t) < V4(O)672W1t + (M1/2W1)

where w; = min{kl,kg,kg,clw,clq}. If we deﬁnef =

Te, Ze, Be, Vu, Y, Vo] T, then, considering equation (20) it is Fe =—Y1(Te +77) — Y2(re + 77)|Te + 77|
9 q
2V, = ||€|* we conclude —¥3(UeVe + UpVe + Vplle + UpVp)U — T + To
e 36
@ <lgfle= + /22 (33 (%0

. where a;, 5; and~; depend on the ROV fixed parameters.
Eq. (33) means that the states of the error dynamics remajpqp, moving in the horizontal plane, the ROV is not
in a small, bounded set around zero, which can be reducﬁgtuated in the sway direction.

using an appropriate combination of the controller gains. At

this result we arrived using (6) along with (12) and (22). C. Control design

I1l. TRACKING CONTROL IN THE LATERAL PLANE (XY) The tracking control objective has been transformed to a

A. ROV kinematics and dynamics stabilizing problem given by the system (4)-(5). Thus, we
The marine vehicle has two back thrusters for movingonsider the following first feedback law:
along the surge and the yaw degree of freedom, but no

side (lateral) thruster for moving along the sway [1]. The Ty =1 (e + ur) — aslue + ur|(ue + ur)

kinematic and dynamic equations of motion are analytically —a3(VeTe + TrUe + Upre + Up1y) — Uy + 71
written as:

& =cipu — sipv, § = spu+ cpv, P =7 Tr = —n(re + 1) = Y2(re + 70)re + 10

U :(1/6){_qu - qu‘u|u + (Jymy + O‘uqavp)vr + Tl} *’Yg(ueve + UpVe + Vplle + UT’UT)U - i’r + To

0 =(1/0){-Yov — Yyp|v|v — (Jemy + appayg)ur} (37)

7 =(1/J){=Npr — Npp|r|r — (Xy — Yy)uv + 7 , ) )
(/71 I ( ) 2} with 7, and 7. being considered as new controls to be

designed later. The corresponding system of errors can be

wherexz andy represent the inertial coordinates of the centegasily written as:
mass of the vehicle and , v are respectively the surge . .
and sway velocities in the body-fixed frame. The orientation*?(e = RyUe + Ry, Up; e =7
of the vehicle is described by the angle and r is its  %e = Tu .
yaw(angular) velocity. Ve = =f1v = Bavlv| = Ba(ucre + trre + 1rue + upry) — Oy
Te = Tp

B. Error dynamics formulation (38)

The aim here is to track the following reference variablesThe examination of equation (38) shows that there is direct
Loy Yps Urs U, vy, 7. TO this end, we define the following control capability on the forward (surge) and on the rotational

(34)

tracking errors: motion of the vehicle but not on the side (sway) motion, i.e.,
Te =1 — Ty Up = U — Uy we can control the linear velocity and the corresponding
Xe = Ye =Y — Yr ) Ve = < Ve =V — v, ) erroru, as well as the angular velocityand the correspond-
Ve = — Yy, Te =7 — Ty ing errorr. . We also observe that we have indirect control
According to (3) and the definition of the tracking errors weof the side velocity errov. through the coupling of the con-
obtain the error dynamics as the kinematic ones: trolled variables in the term¥s(uere 4+ wrre + rpte + upry).
_ p— e Consistent with backstepping design techniqug_s for the side
Xe —( - ) ( v ) velocity error v., we can choose as an auxiliary control
) variable one of the controlled velocities and, then, stabilize
Ry U the latter using the corresponding actual control variable. The
cp_cp,  —s+ s, Uy . same observations hold for the linear and angular position
+ ( s — s, cp —cyy, ) < Uy ); Ve =Te errors: we first use the velocities as control variables for the
P e position, then we stabilize the velocities andr. with 7,

and 7, andwv, using the coupling term.
(35) step 1) In order to stabilize the vector positioX., we
and the dynamic ones: assumeu, andwv, as virtual controls. We start by defining
the following Lyapunov function candidate:

Ue =1 (Ue + up) — Qalte + up|(ue + )

) 1 :
—a3(Vere + TpVe + UpTe + 0pTy) — U +T1 V) = iXeTXe = Vi = XX (RyU. + Ry, U,)



We suggest as desired expressions for the virtual contrasd taking into account Eq.(48), its time derivative is:

Ue = (a, )" = —RE[KX, + Ry, U,] then,

‘}E’) = - XSTKXS - Cluwi - C2uwﬁ + [fu - ﬁSrrwv]wu
=~ k(@ect) + yesy) — cosydy — sinpdy +y (Ye cOS P — T sin ) + (e — Bauw,)ay + 0,7
ay = — k(—zsY + yecth) + sinhdy — cos g (49)
= —k(u. + 01 + sin¥é )
(u C,Osw 1 sineoy) Settinga,, = —c¢,. (e — B3uwy,), ¢ > 0. Then
= — k(ve — sinpdy + cospds)

39) Vs=— XTKX, — 1,2 — cou@l + [fu — Byrrmy)w,

_ 1 _ _ 2
wheréd,, d;]7 = Ry, U,, K = diag(k, k). The time deriva- + @0 (ye cos ) = zesin ) — er (= Fyuwy + )" + v
tive of V; becomes (50)

V= -XTKX.. step 4)The variabler. = «. is not a true control. Thus, we

) have to introduce an errav, = r. — a,. in place ofa, and
step 2)Since the components of the vectdr are not true e yser, to stabilize the subsystem:

controls, we need to introduce new error variables and

w, defined asw = [wy, @,]T = [te — v, ve — ] 7. Then, @y = —fzure — Brrwu + 0v
the controlled position equations are rewritten as Wr = Tr — Qr (51)
. we =wr +
Xe=—KX,+ Ryw (40)

_ _ Finally, for the complete system, we choose the lyapunov
In the following we would forcew,, to zero, so we consider fynction:

the following Lyapunv function:
Vie=V3+ ’(DE/Q

Vo =V1 + (w2)/2 (41) 52)
The time derivative ofl’; can be expressed as: L o
) and its time derivative is:
Vo=—XI'KX, + Ryw + @y (Ty — du 42 .
_ 2 ‘ v ( ) Vi=—XIKX, — c1,@> — couy@h + [fu — B3rr@0]@u
Setting +0, (Ye OSY — e siNY) — ¢ (Ve — Bauwmy)? + 0v T
Tu = — CluWy — c2uwz + Gy — TeC — YesY + fu (43) +wr(7—r + cr((ﬁ3u)2 + ]-)7"6 - Crﬁ:iuQv + Crﬂgurrwu)
where f,, is a design variable for subsequent use, the time (53)
derivative ofV; becomes, We consider the following control law:
o T _ 2 4
Vo = Xe KX, Clu ™y, C2u'wu Ty = — €100, — C2rw7?: _ Cr((63u)2 + ]-)T'e + ¢, B5u0,
+ fuwy + @y (Ye cOSY — X 8INY) (44) Y - (54)
-7 r u

where:;,, and ¢, are positive constants. So far, the con- . N _
trolled subsystem of error dynamics equations has be%wth Cir ‘?md cop are positives scalar. Then, equation (53)
transformed to, ecomes:

Xe =-KX,+ wa Vi=— X?KXe - Cluwz - CZuwi + [fu - 637’rwv}wu
Wy = —C14 Wy — 02uwi + Gy — fﬁecw - yesw + fu +wv(ye cosY — . Sinw) - CT'('(/)C - ﬁ?)uwv)Q + 0v Ty
—C1 w2 — C9 w4

Before starting the next step, we perform some manipulations e e
on the sway error dynamic equations. Then, can be (55)

expanded to: In order to deal with the quantities with uncertain sign we

Gy = — Baure — Barrwy + 00 (46) conduct some algebraic manipulations. Firstly, we set
where fu =BTy — C3W2W, — C4Way, (56)
00 =k(c)dy — 5981) + (k — B1)ve — Bo|v|v — Bsu,r,. — v, ~ Then, EQ (55) becomes:
—01vy + By (kxect) + kye sy + cosdy + sinpds) Vi=—XIKX, — c1,@2 — oyt — 30’ — cywie?
(47) —clrwf - czrwf + Wy (Ye COSY — T sinY) — Qﬁ%tﬁwg
step 3)In order to stabilizew, and. we consider the ve- — b2 4 26, Bauthe @y + 0y T
locity in yaw as an auxiliary control. Choosing the following (57)

Lyapunov function
) ) In the above expression, we remark that the last three terms
Vs =Va + (@, +¢¢)/2 (48)  have uncertain signs. For the analysis we will use the Young’s



1....7 as positive

inequality, with the quantities;, i
constants, we obtain:

|wv‘2
461

wu((ye COS@Z) — Te Sin?/f)) < +€1|Ie|2

+eryel
2
Wy
k8¢51) S% + 62k52|51|2
2
+62k2|52‘2

|wv‘2

wv(kc'(/)62 -

2cr63uwe Wy <
€4

+eacy B3 e |uf?

7&2 |U|Uwv <62'U2 |wv|

|w1,\
e + €550
. Wy
(63“rrr + U +ﬂ1717)wv §|4 ‘ + €6 |£‘2
(k _61)1]@7-4711 <|w1)‘
€7

+67(k‘ — ﬂ1)2|1}6‘2
(58)

ks = c1y > 0, ky = ¢, B3u2,,, > 0, ks = c1, > 0. By using
the comparison lemma [14], the previous equation leads to:

(p2/2w02)

where wy min{ki, ke, k3, clw, c14}. If we defineé =
[Te, Ze, O, Vu, v, vg) T, then, considering equation (52) it is
2V, = ||€||* we conclude

Il <ll€O)]le== + \/Z

Eq. (62) means that the states of the error dynamics remain
in a small, bounded set around zero, which can be reduced
using an appropriate combination of the controller gains. At
this result we arrived using (37) along with (43) and (54).

Vi < =29V 4 po = Vi(t) < Vi(0)e 272t 4

(62)

IV. SIMULATION RESULTS

In this section, we give a numerical simulation to illustrate
our theoretical results. Before starting, we will present the
system parameter values (IS units) used for simulations.

The reference trajectory is described by the following

TABLE |
RIGID BODY AND HYDRODYNAMIC PARAMETERS

Angular rates and velocities are considered to have

maximum values and they verify:

|T |2 < rr mazx? |u‘i < uinaw
* |’U€|2 < Ue max> |U| QS vmaaﬁ
* |51| < 51 ,mazx? |52‘ < 62 ,max

Taking into account the results from (58) , the time derivativ
of V, in (57), becomes:

2 2

"/21 <- [ — €1 — 63k Tr, maz]l'e - [k — € - €3k Tr, max}ye
sz o L L L 1 1 1 1
—wylesw, —— —— —(— — — — — — — — —
vl 261 262 263 €4 465 466 467
—cluw2 — 02uw4 — 04w4w2 — ch.wf — czrw;‘f
_CTB mamw - [C - 64626 mam]wg + 2
(59)
where
H2 [€2k + 63]{’12 Ty, max]éf max [€2k2 + €3k2 Ty ITLCL.,C](SS,’ITL(MU
+€7(k ﬁl) Ve, max + €6|€| + €5ﬁ21}maw
(60)
Tl 2 1 1 1 1 1 1 1
The coefflc:.u'entgwu—Z —12?2— 3~ 51_@)1_?6_ e
must be positive, where = = + g togtotict
466 + @ Consequentl){wu| must be above /=, which

holds for largecs and smalle. So, from the inequality, we
obtain:

kgwu2 — k4w12) — kg,wf + H2
(61)

Vi = — ka2 — kiy? — kotp? —

where kq k — e — 63k‘ r2 > 0, ko

2132,2
64C'r'63 Umaz > 0,

r,maxr Cr —

Parameter Symbol Value
mass m 10.84
Added mass in surge| X, -1.0810
Added mass in sway Y, -0.3848
Added mass in heave| 7, -0.3.848
Added inertia in roll K; 0
o Added inertia in yaw Ny -0.0075
Added inertia in pitch M, -0.0075
Surge linear drag X 0.9613
sway linear drag Y, 2.4674
heave linear drag Zw 2.4674
yaw linear drag N, 5.3014 x 10~°
Surge linear drag M, 5.3014 x 10~°
Surge quadratic drag| X 4.4674
Sway quadratic drag Yoo 5.989
heave quadratic drad| Zuw 5.989
Quadratic yaw drag Ny 0.1011
Quadratic pitch drag Mgq 0.1011
equations
t5

LTy =Yr = 2r =

hTtS + (tf _ t)5

whereh,. is the desired altitude ang is the final time. The
simulation results are obtained with these gains:

k=0.1, c1y, = 10, coy, = 10, 14y = 10, €24y = 10, 14 = 1,

cg =1, 1, =1, o =1, ¢y =10, ¢, =10, h, = 10.

In Fig (4,5,8,9), the reference and the actual trajectory of
the ROV in the inertial space are displayed. We see the
convergence of the center of the masstrajectory to the
desired one. The error in the linear and angular velocities
which converge are depicted in Fig (3,7). In Fig (2,6), we
can see that the inertial position errors and the Euler angles
errors in a small neighborhood of zero.
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the inertial position errorkig. 3. The error in the linear and
and the Euler angles errors in tlamgular velocities in th&( Z plane

addressed. In the first section, the kinematic and dynamic on
the vertical plane are described. Given a reference trajectory
to be followed by the ROV, using these reference values,
the dynamic of the ROV was transformed to the error one.
Backstepping techniques were utilized to stabilize the above
system and force the tracking error to a neighborhood about
zero. In the second section The control problems of tracking
on the horizontal plane for a ROV has be considered. A
time-varying feedback control laws were derived using a
combined integrator backstepping and averaging approach.
The trajectories of the controlled ROV were proved to

X Z plane
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Fig. 4. The actual trajectory anllig. 5. The actual trajectory and
the reference trajectory in th€Y the reference trajectory in th¥Y
plane, plane,
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position errors
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Fig. 6. the inertial position errorig. 7. The error in the linear and
and the Euler angles errors in tlamgular velocities in th&(Y” plane
XY planE

[10]

(11]

—y

[12]

(23]

[14]
[15]

0 5 10 15 20 0 10 20 30 40 50 60
s) s)

[16]
Fig. 8. The actual trajectory anllig. 9. The actual trajectory and

the reference trajectory in th€Y the reference trajectory in th&Y
plane, plane,

V. CONCLUSIONS

In this paper, the problem of trajectory tracking control for
underactuated ROV on the vertical and horizontal plane was

converge to the reference trajectory.
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