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Abstract— This paper deals with the finite-time stability of
dynamic perturbed systems. The Lyapunov stability case is
studied for nonautonomous systems and where the autonomous
part is considered as finite-time stable and augmented by a
separable function related to time-varying perturbations. As a
result, the nonautonomous perturbed system is showed finite-
time stable. Sufficient conditions are proposed for finite-time
stability of homogeneous and T-periodic systems and where
the averaging method has lead to a perturbed average system.
The autonomous X4 flyer attitude and position stabilizations
are obtained in finite-time. Some simulation results illustrate
the proposed stability method.

I. INTRODUCTION

It is well known that finite-time stability is defined for
equilibria of continuous but non-Lipschitzian autonomous
systems. It involves dynamical systems whose trajectories
converge to an equilibrium state in finite time. The problem
of this stability theory is motivated by the fact that is
more practical concept of stability than is provided by the
classical theory. Conditions of stability take the form of
existence of Lyapunov-like function whose properties differ
significantly from those of classical Lyapunov functions and
where difficulties to describe this function persist. In this
case, the average techniques are an alternative, because there
is no requirement of definiteness on such functions or their
derivative. Haimo [2] studied autonomous scalar systems
and gives necessary and sufficient conditions for the finite-
time stability of the origin. The stability problem of nonau-
tonomous systems was treated by several authors such as
Orlov [7] for switched systems, Moulay in [4] gives sufficient
conditions for finite-time stability using Lyapunov functions
and Haddad [9] provides Lyapunov and converse Lyapunov
conditions for finite-time stability. A principal result of finite-
time stability for homogeneous nonautonomous systems was
obtained by Bhat in [8].

In generally, an autonomous or nonautonomous dynamical
system involves perturbations depending in time and the
systems states. Then, the dynamical system is presented in
the form of two subsystems. One function will describe the
autonomous or unperturbed dynamic and the second part re-
groups all perturbations. Perturbation terms could result from
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modeling errors, external disturbances. Such a separation
leads to a system that belongs to the family of perturbed sys-
tems. A general study for asymptotic, exponential stability of
perturbed systems was treated in the literature. We can refer
to Khalil in [14] for further details. The averaging method is
an alternative for T-periodic perturbed systems. Asymptotic
stability result for perturbed systems using averaging was
proposed by M’Closky in [13], using the same technique.
An exponential stability result was developed in [14].

The averaging method is proposed in this paper for locally
finite-time stability of nonautonomous dynamic systems,
which is in our opinion has not been developed yet. The
autonomous average system is considered locally finite-time
stable and sufficient conditions are derived for the initial
system stability.

Perturbed systems stability in finite-time considers at
least that the unperturbed system is finite-time stable and
bounding conditions to perturbations are added. We can cite
the work of Orlov [7] and Bhat [3]. In this paper, the
finite-time stability problem integrates perturbations of the
form h(t, x) =

∑
Ri(t)gi(x) where Ri(t) is considered as

a separate perturbation. We suppose that this perturbation
is simply bounded with respect to time t and is in small
neighborhood around zero with respect to the space x. Using
the Lyapunov theory and inspired by the work of Moulay [4]
and Baht [6], we propose some sufficient conditions leading
to the finite-time stability of the origin.

The paper is organized as follows: the second section is
devoted to some preliminary mathematical results of finite-
time stability and homogeneity. In the third section, we
present our main result for a system that is T-periodic
and homogeneous using the averaging method. Sufficient
conditions for finite-time stability of perturbed autonomous
systems including separate perturbations are presented in
section IV. Section V details the X4-flyer autonomous aerial
vehicle and the finite-time stabilization results for attitudes
and positions. Simulation results and conclusions are given
in section VI and section VII, respectively.

II. MATHEMATICAL PRELIMINARIES

In this section we present several preliminary results and
definitions which are related to the problem of finite-time
stability of nonautonomous systems.

Definition 2.1: [4] Let us consider a nonautonomous dy-
namic system of the form:

ẋ =f(t, x) (1)

where f is continuous functions in R≥0 × Rn.
The origin is weakly finite-time stable for the system (1) if:



(1) the origin is Lyapunov stable for the system (1),
(2) for all t ∈ I , where I is nonempty interval of R, there

exists δ(t) > 0, such that if x ∈ Bδ(t) then for all
Φxt ∈ S(t, x):

i) Φxt (τ) is defined for τ ≥ t,
ii) there exists 0 ≤ T (Φxt ) < +∞ such that Φxt (τ) =

0 for all τ ≥ t+ T (Φxt ).
Let

T0(Φxt ) = inf{T (Φxt ) ≥ 0 : Φxt (τ) = 0 ∀τ ≥ t+T (Φxt )}

(3) Moreover, if T0(t, x) = supΦxt ∈S(t,x) T0(Φxt ) < +∞,
then the origin is finite-time stable for the system (1).

T0(t, x) is called the settling time with respect to the initial
conditions of the system (1).

Theorem 2.2: [4] Suppose that the origin is an equilibrium
point i.e f(t, 0) = 0 of the system (1).
If there exists a positive definite function r such, for ε > 0∫ ε

0

dz

r(z)
<∞

If V is a Lyapunov function continuously differentiable such
that

V̇ ≤ −r(V )

then the system (1) is finite-time stable.
The following definitions are useful in the case of a
nonautonomous homogeneous system. Further details are in
[6],[11] and [12].

Definitions 2.3
• The dilation is considered of the form

∆λ(x1, . . . , xn) = (λr1x1, . . . , λ
rnxn) (2)

where x1, . . . , xn are suitable coordinates on Rn and
r1, . . . , rn are positive real numbers. The dilation cor-
responding to r1 = · · · = rn = 1 is the standard dilation
in Rn.

• The Euler vector field of the dilation is linear and is
given by

ν = r1x1∂x1 + · · ·+ rnx1∂xn

• a function f : Rn → R is homogeneous of degree l
with respect to the dilation (2) if and only if

f(λr1x1, . . . , λ
rnxn) = λlV (x1, . . . , xn)

• A continuous vector field X(t, x) =
∑
ai(t, x) ∂

∂xi
on

R×Rn is homogeneous of degree m ≤ rn with respect
to ∆λ if ai is degree ri −m for i = 1, ...,m

• A continuous map from Rn to R, x 7→ ρ(x) is called a
homogeneous norm with respect to the dilation ∆λ i.e:
1) ρ(x) ≥ 0, ρ(x) = 0 ⇔ x = 0;
2) ρ(∆λx) = λρ(x) ∀λ > 0

• The homogeneous norm may always be defined as

ρ(x) = |x
c
r1
1 + x

c
r2
2 + ...x

c
rn
n |

1
c

where c is some positive integer evenly divisible by ri

III. FINITE-TIME STABILITY USING AVERAGING

in this section, sufficient conditions are given for finite-
time stability of homogeneous and T-periodic systems. Using
the averaging method [14] the analysis has lead to a per-
turbed autonomous system. The averaging result presented
here has directly facilitated the stability analysis without
using the Lyapunov function.
Let consider the following system :

ẋ = εf(t, x, ε) (3)

where x ∈ Rn, ε ≥ 0 is a real parameter, f continuous
map from R×Rn×R+, T-periodic in t and f(., x, .) degree
m < 0 homogeneous with respect to the Euler dilation ν and
bounded in x.
The average system is defined by:

ẏ = εfav(y) (4)

with

fav(y) =
1
T

∫ T

0

f(τ, y, 0)dτ.

Note that fav is also of degree m < 0 homogeneous with
respect to the Euler dilation ν and bounded.
Our result is stated in the following proposition.

Proposition 3.1: Assume that y = 0 is finite-time stable
fixed point of the associated averaging system (4), then for
ε > 0 sufficiently small, the solution x = 0 is finite-time
stable for the system (3).

�

Proof. The basic problem in the averaging method is to
determine in what sense the behavior of the autonomous
system (4) approximates the behavior of the nonautonomous
system (3). One starts the analysis by an adequate change of
variable such that the autonomous system can be represented
as a perturbation of the autonomous one. This change of
variable is expressed by

x = z + εu(t, z)

where u(t, x) =
∫ t

0
[f(τ, x, 0)− fav(x)]dτ .

Differentiating it with respect to time leads to:

ẋ = ż + ε
∂u

∂t
(t, z) + ε

∂u

∂z
(t, z)ż

therefore, the state equation for z is given by (for further
developments we can see [14]).

ż = εfav(z) + ε2q(t, z, ε)

The second term represents a perturbation of the average
system.
Now let consider a scale change in time s = εt that
transforms the last equation into

dz

ds
= fav(z) + εq(s/ε, z, ε) (5)

where q(s/ε, z, ε) is εT−periodic in s and bounded on
[0,∞)×D0 for sufficiently small ε.



As fav is homogeneous function of degree m < 0 and the
origin of the average system (4) is finite-time stable, from
Bhat’s results [6] there exist a Lyapunov function V , C1

on Rn and homogeneous of degree l > max{0,−m} with
respect to ν, and there exist c > 0, such that V̇ ≤ −cV l+m

l

for the average system (4).

Note that
∑n
i=1

∂V

∂xi
= lV and M = sup

(s,z,ε)

q(s, z, ε)

The time derivative of V with respect to system (5)

V̇ ≤− cV
l+m
l + ε||∇V ||||q(s/ε, z, ε)||

≤ − V
l+m
l [c− lMV

−m
l ]

Since −ml > 0 and V is continuous function which takes 0
at the origin, there exists an open neighborhood Ω1 of the
origin, and the last inequality now yields

V̇ ≤ − c
2
V
l+m
l .

Then the equilibrium of system (5) is finite-time stable.
It remains to prove that x = 0 is finite-time stable for the
initial system (3). Using the fact that x = z + εu(t, z) with
u is bounded in (t, x, ε), then x(t) − z(s) = O(ε). Hence,
∃M1 > 0 such that ‖x(t)− z(s)‖ ≤M1

As the equilibrium of (5) is finite-time stable, then there exist
T , settling-time function, such that lim

s→T
z(s) = 0.

For γ > 0, there exist ε∗ = γ
M > 0, and ∃β > 0 such as

|s − T | < β. Consequently, ‖z(s)‖ ≤ γ −Mε > 0 for all
ε ∈]0, ε∗[. On the other hand, ‖x(t)‖ ≤ Mε + ‖z(εt‖, then
for |t − T

ε | <
β
ε , we have ‖x‖ ≤ γ. Thus lim

t→T
ε

x(t) = 0 or

the finite-time stability of (3).

�

IV. PERTURBED AUTONOMOUS SYSTEMS

A particular case of perturbed autonomous systems is
presented in this section. A time varying disturbance is
considered separable from the perturbed term. A perturbed
autonomous system is described by:

ẋ = f(x) + g(t, x) (6)

This system can be written in the following form:

ẋ = f(x) +
k∑
i=1

Ri(t)gi(x), x ∈ Rn, t ≥ 0 (7)

where f , gi (i = 1, ..., k) are continuous functions in Rn
to Rn, Ri (i = 1, ..., k) are continuous functions in R+.

The objective here is to derive sufficient conditions that
guarantee the finite-time stability of system (7).

Proposition 4.1: The equilibrium of the perturbed system
(7) is finite-time stable if the following assumptions hold:

1) the equilibrium of the unperturbed system

ẋ = f(x) (8)

is asymptotically stable and homogeneous of degree
m < 0 with respect to the Euler dilation ν.

2) the function Ri is bounded for all t ∈ R+ and (i =
1, ..., k).

3) the function gi(x) = O(||x||αi) for (i = 1, ..., k) and
x ∈ Ω where Ω is in neighborhood of the origin, αi ∈
]0, l[, where l > {0,−m} and α1 ≤ α2 ≤ ... ≤ αk.

�

Proof. From 1) there exist a Lyapunov function V , C1 on Rn
and homogeneous of degree l > max{0,−m} with respect
to ν and there exist c > 0, then V̇ ≤ −cV l+m

l for the
unperturbed system (8) [6].
From 2) there exist M1 > 0 such that

M1 = sup
t∈R+

sup
1≤i≤k

Ri(t)

and from 3) there exist M2 > 0 such that

||gi(x)|| ≤M2||x||αi

Let M = max(M1,M2).
If V is continuous homogeneous function of degree l > 0,
then ∂V

∂x1
+ ...+ ∂V

∂xn
= lV .

The time derivative of V with respect to system (7)

V̇ ≤− cV
l+m
l +M1||∇V ||||gi(x)||

≤ − cV
l+m
l + lM2M1V ||x||αi

≤− cV
l+m
l + lMV ||x||α1

(9)

and for a neighborhood Ω1 of the origin there exist γ > 0.
With

V̇ ≤ −γV
l+m
l

Then we conclude that if the unperturbed system is
finite-time stable, the separate time varying perturbation is
bounded, and the vector fields gi are O(‖x‖α) then the
equilibrium of the original perturbed system remains stable
in finite-time.

�

V. APPLICATION: FINITE-TIME STABILIZATION OF A
X4-FLYER

The X4-bidirectional aerial vehicle is minimum in size
consisting of four individual electrical fans attached to a
rigid bar. Two of them can be oriented by an electric servo-
mechanism. This makes the system different of a conven-
tional X4-flyer.

We consider a local reference airframe <G =
{G,Eg1 , E

g
2 , E

g
3} attached to the center of mass G of the

areal vehicle. The center of mass is located at the inter-
section of the two rigid bars, each of them supports two
motors. Equipment (controller cards, sensors, etc.) onboard
are placed not far from G. The inertial frame is denoted by
<o = {O,Ex, Ey, Ez} such that the vertical direction Ez is
upward. Let the vector ξ = (x, y, z) denote the position of
the center of mass of the airframe in the frame <o. While
the rotation of the rigid body is determined by a rotation
R : <G → <o, where R ∈ SO(3) is an orthogonal rotation



matrix. This matrix is defined by the three Euler angles,
θ(pitch), φ(roll) and ψ(yaw). A sketch of the X4-flyer areal
vehicle is given by figure 1 and frames for modeling in
figure 2. In the following, we recall only equations due to
translations and the attitude yaw dynamic. The reader can
refer to [16] for further details in modeling.

Fig. 1. A general form of the X4-flyer

Fig. 2. X4-flyer frames

Before to tackle to the X4-flyer finite-time stabilization
problem, in the following, we introduce a general form of a
controlled nonlinear system and a finite-time stability result
for the double integrator case.

Definition 5.1: [4] The origin is finite-time stabilizable for
the controlled system

ẋ =f(x, u), x ∈ Rn, u ∈ Rm (10)

if there exists a control u ∈ C0(Ω,Rm) such that
• u(0) = 0

• the origin of the system ẋ = f(x, u(x)) is finite-time
stable.

We consider the following reduced model of the X4-flyer
where the double integrator dynamics of θ and φ can be
easily finite-time stable to the origin. A direct input for each
attitude variable is asserted through a servomotor and an
adequate control can be elaborated.
Our interest concerns the following inertial dynamic model
[16]:

mẍ =u sin(ψ)
mÿ =u cos(ψ)
mz̈ =mg − v (11)

ψ̈ =τψ

where (x, ẋ, y, ẏ, z, ż, ψ, ψ̇)t ∈ R8, and (u, v, τψ) ∈ R3

is the control vector. By adding integrator, we obtain the
following augmented system:

ẋ =x1

ẋ1 =
1
m
α sin(β)

ẏ =y1

ẏ1 =
1
m
α cos(β) (12)

α̇ =u

β̇ =ψ

Since the finite-time stability of (z, ψ) behavior in the
subsystem (13) can be achieved respectively by v and τψ .
For the subsystem (13)

ż =z1

ż1 =g − 1
m
ν (13)

ψ̇ =ω
ω̇ =τψ

System (13) takes the forme of a double integrator. The
finite-time stabilization of (13) can be achieved through
Bhat’s results [8], and the following control inputs achieve
the finite-time stabilization of the altitude z and the attitude
ψ:

ν =m(g + k1sign(z)|z|α1 + k2sign(z1)|z1|α2

τψ =− k1sign(ψ)|ψ|α1 − k2sign(ω)|ω|α2 (14)

ensure the finite-time stabilization of (13). k1 > 0, k2 > 0,
α1 ∈ (0, 1) and α2 = 2α1

1+α1
.

Remark 5.2: The system (12) doesn’t verify the necessary
conditions of Brockett [10], hence it cannot be stabilized by
a static smooth feedback law. A time varying feedback law
that overcomes the obstruction due to Brokett and leads to a
finite-time stabilization is given in the following proposition.



Proposition 5.3: Let

αd =2mρχ sin(
t

ε
)− 2m(ϕ1/3(y) + ϕ1/2(y1))

βd =− 2
sin( tε )
ρχ

(ϕ1/3(x) + ϕ1/2(x1))

u =− k1(α− αd)− α̇d (15)

ψ =− k2(β − βd)− β̇d

where ρχ = |x2 + x3
1 + y2 + y3

1 |
1
6 and the notation ϕa(x) =

sign(x)|x|a, x ∈ R, then for any small nonnegative k1, k2

and for every ε > 0 sufficiently small, the system (12) is
locally stabilizable in finite-time.

�

Proof. The initial system can be rewritten in compact form
as following:

Ẋ = F (X, t) (16)

where X = (x, x1, y, y1, α, β)t ∈ R6 and F (X, t) ∈ R6 is
as

F (X, t) =


x1

1
mα sin(β)

y1
1
mα cos(β)

u
ψ

 (17)

The associated linearized model is given by:

ẋ =x1

ẋ1 =
1
m
αβ

ẏ =y1 (18)

ẏ1 =
1
m
α

α̇ =u

β̇ =ψ

The analysis consists to take part of u = −k1sign(α −
αd)|α−αd|

1
3 + α̇d and ψ = −k2sign(β−βd)|β−βd|

1
3 + β̇d

which ensure that α → αd and β → βd as finite time.
Therefore, in closed loop

ẋ =x1

ẋ1 =
1
m
αdβd

ẏ =y1 (19)

ẏ1 =
1
m
αd

Due the periodic time varying control inputs, the resulting
system is also a periodic time varying which can be written
in the form:

Ẋ = f(X) +R1(
t

ε
)g1(X) +R2(

t

ε
)g2(X) (20)

where

f(X) =


x1

−2(ϕ1/3(x) + ϕ1/2(x1))
y1

−2(ϕ1/3(y) + ϕ1/2(y1))



g1(X) =


0

4
ρχ

(ϕ1/3(x) + ϕ1/2(x1))(ϕ1/3(y) + ϕ1/2(y1))
0

2ρχ



g2(X) =


0

−4(ϕ1/3(x) + ϕ1/2(x1))
0
0


R1(t) = sin(t) and R2(t) = sin2(t)− 1

2 .
The nonautonomous part of the X4-flyer dynamic as given

by (12), which is also the average dynamic, is locally
finite-time stable. In fact, fav(X) = f(X) is homogeneous
of degree (−1) with respect to the dilation ∆λ(X, t) =
(λ3x, λ2x1, λ

3y, λ2y1) (for further details see Bhat [6]).
As Ẋ = h(x, tε ), h regroups the right part of (12). h is
continuous, 2π-periodic and of degree (-1) with respect to the
dilation, then (12) is locally finite-time stable. This confirm
our analysis in the case of a perturbed system using averaging
methodology (Proposition 3.1). A similarly proof result can
be obtained if we consider Proposition 4.1. All hypothesis in
proposition can be easily verified where the nonautonomous
part is given by f(X). This ends the proof.

�

VI. SIMULATION RESULTS

In this section, we present simulation results of the au-
tonomous X4-flyer areal vehicle. Let take m = 1kg, ε =
0.034, k1 = 0.25 and k2 = 0.25. The drone was initialized
first at position (x0, y0, ψ0) = (0.1m, 0.5m,−π2 ) (figure
3) and second at position (x0, y0, ψ0) = (−2m, 0.5m, 0rd)
(figure 4). The two figures confirm the theoretical finite-time
stability and also the finite-time stabilization achieved for the
application. There will be some real applications in progress
for the X4-flyer presented in figure 1. The proposed control
inputs for the X4-flyer integrate time-varying trigonometric
terms, then in practice, the smoothness of their behaviors
must be studied carefully.

VII. CONCLUSION

The finite-time stability of perturbed dynamic systems was
studied using the Lyapunov theory and the average method.
For a nonautonomous system, the stability analysis use the
average method, consequently, the average system stability
turned to literature classical finite-time stability results, ob-
tained in the case of autonomous systems. A second part of
the paper treated finite-time stability of perturbed systems but
in the case of a separate perturbation. The autonomous part
resulting for this separation was considered finite-time stable
and sufficient conditions on perturbations were introduced.



Fig. 3. X4-flyer as finite-time stabilizable at the origin

Conclusions to finite-time stability of perturbed systems in
this case were proved with the Lyapunov theory. Finite-
time stabilization of X4-flyer attitudes and positions was
obtained with the developed theoretical results. Simulations
were presented and confirm the proposed stabilizing control-
inputs.
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