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Abstract: We present in this paper the stabilization (tracking) with motion planning of the six 
independent configurations of a mini unmanned areal vehicle equipped with four streamlined 
rotors. Naturally, the yaw-dynamic can be stabilized without difficulties and independently of 
other motions. The remaining dynamics are linearly approximated around a small roll and pitch 
angles. It will be shown that the system presents a flat output that is likely to be useful in the 
motion generation problem. The tracking feedback controller is based on receding horizon 
point to point steering. The resulting controller involves the lift (collective) time derivative for 
what flatness and feedback linearization are used. Simulation tests are performed to progress in 
a region with approximatively ten-meter-buildings. 
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1. INTRODUCTION 
 
Unmanned Areal Vehicles (UAV) terrain mission 

control is a matter of both interest and controversy for 
scientific research and engineering design. A large 
class of industrial and military control constraints 
consist in planning and following predefined 
trajectories. Examples range from unmanned and 
remotely piloted airplanes and submarines performing 
surveillance and inspection, mobile robots moving on 
factory floors and multi-fingered robot hands 
performing inspection and manipulation inside the 
human body under a surgery control. All these 
systems are highly nonlinear and require accurate 
performance.  

Modeling and controlling aerial vehicles (blimps 
[2], mini rotorcraft) are the principal preoccupation of 
the Lsc, Lim- groups. In this topic, a mini-UAV is 
under construction by the Lsc-group taking into 
account industrial constraints. The areal flying engine 
couldn’t exceed 2kg  in mass, and 50cm  in 
diameter with a 30mn  flying-time. Within this optic, 

it can be held that our system belongs to a family of 
mini-UAV. A mini-flyer with streamlined rotors and 
blades was envisaged by the group. It is an 
autonomous hovering system, capable of vertical take-
off, landing and quasi-stationary (hover or near hover) 
flight conditions. Compared to helicopters, named 
quad-rotor, [1,7,11] the four-rotor rotorcraft has some 
advantages [5,10]: given that two motors rotate 
counter clockwise while the other two rotate 
clockwise, gyroscopic effects and aerodynamic 
torques tend, in trimmed flight, to cancel. An X4-flyer 
operates as an omnidirectional UAV. Vertical motion 
is controlled by collectively increasing or decreasing 
the power for all motors. Lateral motion, in x-
direction or in y-direction, is achieved by 
differentially controlling the motors generating a 
pitching/rolling motion of the airframe that inclines 
the collective thrust (producing horizontal forces) and 
leads to lateral accelerations.  

A model for the dynamic and configuration 
stabilization of quasi-stationary flight conditions of a 
four rotor vertical take-off and landing (VTOL) was 
studied by Hamel [5] where the dynamic motor effects 
are incorporating and a bound of perturbing errors was 
obtained for the coupled system. The stabilization 
problem of a four rotor rotorcraft is also studied and 
tested by Castillo [3] where the nested saturation 
algorithm is used. The idea is to guarantee a bound of 
the roll and pitch angles with a fixed bounded in 
control inputs. With the intent to stabilize an aircraft 
that is able to take-off vertically as helicopters, the 
control problem was solved for the planar vertical 
take-off and landing (PVTOL) with the input/output 
linearization procedure [6] and theory of flat systems 
[4,8,9]. 
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Fig. 1. General view of the four rotors rotorcraft. 

 
In this paper, flatness and motion planning are 

combined to solve the point per point control of the 
X4-flyer. We show that the system is flat with 
ξ ( )x y z= , ,  as a flat-output. By virtue of the system 
being flat, we can write all state and input trajectories 
satisfying the differential equation in terms of the flat 
output and its time derivatives. The idea will be 
considered here for point to point control problem 
with a predefined path following.  

The paper presents as follows: the translational and 
rotational motions, described by the Newton-Euler 
formalism, are detailed in Section 2. Section 3 deals 
with the flatness of the system and the way the 
reference motion is scheduled. The stabilization of the 
relative equilibrium is addressed in Section 4 where the 
stability of altitude/attitude motion is accomplished. A 
strategy to solve the tracking problem through point to 
point steering is shown in Section 5; incorporating the 
real time control and the trajectory realization. Finally, 
simulation tests, results and comments are put at work. 

 
2. CONFIGURATION DESCRIPTION AND 

MODELLING 
 
The X4-flyer is a system consisting of four 

individual electrical fans attached to a rigid cross 
frame. It is an omnidirectional VTOL vehicle ideally 
suited to stationary and quasi-stationary flight 
conditions. We consider a local reference airframe 

1 2 3{ }g g g
G G E E Eℜ = , , ,  attached to the center of mass 

G  of the vehicle. The center of mass is located at the 
intersection of the two rigid bars, each of which 
supports two motors. Equipment (controller cartes, 
sensors, etc.) onboard are placed not far from G . The 
inertial frame is denoted by oℜ =  { }x y zO E E E, , ,  
such that the vertical direction zE  is upwards. Let 
the vector ξ ( )x y z= , ,  denote the position of the 
center of mass of the airframe in the frame oℜ . 
While the rotation of the rigid body is determined by a  

 
Fig. 2. Upper view to the four rotors rotorcraft. 

 
rotation G oR :ℜ →ℜ , where (3)R SO∈  is an 
orthogonal rotation matrix. This matrix is defined by 
the three Euler angles, θ  (pitch), φ  (roll) and ψ  
(yaw) which are regrouped in η (φ θ ψ)= , , . A sketch 
of the X4-flyer is given in Figs. 1, 2, and 3. Here-after, 
we give details about the equation of motion, obtained 
with the Newton-Euler method. 

 
2.1. Translation motion 

We consider the translation motion of Gℜ  with 
respect to (wrt) oℜ . The position of the center of 

mass wrt oℜ  is defined by ( )tOG x y z= , its time 
derivative gives the velocity wrt to oℜ  such that 

( )tdOG
dt x y z= , while the second time derivative 

permits to get the acceleration: 
2

2 ( )td OG
dt

x y z=  

denoted by  
 

 
2

2 γ |
OG

d OG
dt

ℜ= .                        (1) 

 
Applying the first Newton equation of mechanics, 

we obtain the following compact expression of the 
translational motion  

 
 m φθψγ |

O
t

G zmge R uℜ = − + ,               (2) 
 

where m  is the total mass of the vehicle. The vector 
u  combines the principal non conservative forces 
applied to the X4-flyer airframe including forces 
generated by the motors (Fig. 2) and drag terms. Drag 
forces and gyroscopic due to motors effects will be 
not considered in this work. ze  is the unit vector of 

zE . The lift (collective) force u  is the sum of the 
four forces, such that  
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4

1
i

i
u f

=
= ∑                               (3) 

 
with 2

3ωi i if k e=  and 3e  is the unit vector along 

3
gE . 0ik >  is a given constant (we consider ik k= ) 

and ωi  is the angular speed resulting of motor i . 
The form of the rotation matrix used in (2) is as 
follow: 

 
θ ψ ψ θ θ

φθψ ψ θ φ ψ φ θ ψ φ ψ φ θ φ

ψ θ φ ψ φ θ ψ φ ψ φ θ φ

R

c c s C s

c s s s c s s s c c c s

c s c s s s s c c s c c

 
 
 
 
 
  
 

−

= − +

+ −

.  (4) 

One substitute (3) into (2), we obtain  
 
 m φθψ 3γ |

O
t

G zmge uR eℜ = − + ,             (5) 
 

where the scalar 4 2
1 ωi iiu k
=

= ∑  represents the 

system’input ( 0u > ). 
 

2.2. Rotational motion 
The rotational motion of the X4-flyer will be 

defined wrt to the local frame but expressed in the 
inertial frame. According to Classical Mechanics, and 
knowing the inertia matrix GI  of the X4-flyer at the 
center of mass and its local velocity of rotation Ω , 
the kinetic moment σG  is defined by  

 σ ΩG GI=                              (6) 
 

or the rotational velocity vector is related to 
η (φ θ ψ)t=  vector through  
 
 Ω (η)J η= ,                             (7) 

 
where in the local frame Ω Ωe= , 1 2 3( )te e e e=  and 
the jacobian  
 

 
θ θ

φ φ θ

φ φ θ

0
J(η) 0

0

c s
c s c

s c c

 
 
 
 
 
  
 

−
=

−

. 

 
Then, from (6) and (7) we get  

 
 σ (η)G GI J eη= .                         (8) 

 
In the following let Π (η) (η)G GI J . Using the 

derivative of (8), the dynamic moment  
 

 δ (η) Π (η) Π (η)t
G G GG e e eη η ηη= + +Π ,     (9) 

 
where the superscript t  denotes the transpose. The 
rotational motion is subject of the following relation  
 

 (η) Π (η) Π (η)t
G GG exte e e Mη η ηη+ + =Π ∑ , (10) 

 
Fig. 3. Frames attached to the four rotor rotorcraft. 
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where the external moments wrt G  ( 1 4il l i= , = ,...,  
distance from G  to motor i , which are considered 
identical)  

 θ 1 φ 2 ψ 3τ τ τext e e eM = + +∑ ,             (11) 

where  

 

2 2
θ 2 4

2 2
φ 3 1

2 2 2 2
ψ 1 3 2 4

τ (ω ω ),

τ (ω ω ),

τ κ(ω ω ω ω ).

lk

lk

= −

= −

= + − −

               (12) 

The equality from (10) is ensured, meaning that  
 
 1Π (η) (τ (η) )G Gη η−= −Π                 (13) 

 
with θ φ ψτ (τ τ τ )t= . 

Explicitly writing, we get  
 

 

φ

φ θ

1
θ φ

21
φ φ θ θ φ

ψ

(τ ),

(τ ),

τ .

xx

yy

xxI c

yy yyI c c

zz

I s

I s c I s c

I

θ φθ

φ θφφ

ψ

= +

= + +

=

    (14)

 

 
As a first step, the model given above can be 

input/output linearized by the following decoupling 
feedback laws  

 

 

θθ φ φ

2
φφ φ θ θ φ φ θ

ψψ

τ ,

τ ,

τ ,

xx xx

yy yy yy

zz

I s I c

I s c I s c I c c

I

φθ τ

θφφ τ

τ

= − +

= − − +

=

   (15) 

 
and the decoupled dynamic model of rotation can be 
written as  

 η τ=                                 (16) 

with θ φ ψ( )tτ τ τ τ= .  
Using the translational and rotational motions (2) 

and (16), equations of the dynamic are detailed by  
 

 

θ

θ φ

θ φ

θ

φ

ψ

,
,

,

,

,

,

mx us
my uc s

mz uc c mg

θ τ
φ τ
ψ τ

= −

=

= −

=

=

=

                        (17) 

which is a set of nonlinear differential equations with 
drift. 
The four inputs φθ ψu, , andτ ττ  will be calculated 

to ensure the point to point stabilization with motion 
planning. It is clear that our device belongs to families 
of underactuated systems. System (17) seems to be 
treatable compared to blimps [2].  

Note that in (17) the appropriate choice of ψτ  

permits to stabilize ψ  at any desired value ψd  
modulo 2π . As well as for its first and second time 
derivatives. While θ  and φ  variables are limited to 
an open set defined by π

2± . 
 
3. MOTION PLANNING AND FLATNESS 

 
A system is flat if we can find a set of outputs 

(equal in number to the number of inputs) such that all 
states and inputs can be determined from these 
outputs without integration [9]. Flatness was first 
defined by Fliess et al. [4]. It was considered by 
Martin et al. [9] with motion planing. More precisely, 
if the system has states nx∈ , and inputs mu∈ , 
with 

 ( )x f x u= , ,                           (18) 

where f  is a smooth vector field, then the system is 
flat if we can find outputs my∈  of the form  

 
( )( )ry h x u u u= , , ,...,  

such that  
 ( )( )qx y y yϕ= , ,..., ,  

 ( )α( )qu y y y= , ,..., . 
When a system is flat it is an indication that the 

nonlinear structure of the system is well characterized 
and one can exploit that structure in designing control 
algorithms for motion planing, trajectory generation, 
and stabilization. 

Proposition 1: The X4-flyer described by the 
dynamic (17) is flat with ξ ( )x y z= , ,  is its flat 
output.  

Proof: First, we define the state by X =  
( θ φ )x y z x y z θ φ, , , , , , , , , , we denote X  its time 
derivative, and the input vector is regrouped in 

θ φ( )U u τ τ= , , , then the system can be written as  

 ( )X f X U= , .                         (19) 

To prove that the state and the control vector are 
function of the flat output and their derivatives, for 
any given trajectory ( ( ) ( ) ( )x t y t z t, , ) smooth enough, 
we get ( 0u > )  
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( )
( )

1
2

φ

222u= ( ) ,

φ ,

θ .

y
z g

c x
z g

m z gyx

arctg

arctg

+

+

+ + +

=

 = −  
 

                 (20) 

Indeed, u , θ , φ , u , θ  and φ  are function of 
(3)ξξ , . So, it is straightforward to verify that 

(2) (3)(ξ ξ ξ )X ϕ ξ= , , , . Moreover, we can derive θ( )t , 
φ( )t  and prove the ξ -dependence of θτ =  

θ
(2) (3) (4)α (ξ ξ ξ )τ , ,  and 

φ
(2) (3) (4)

φ α (ξ ξ ξ )ττ = , , .   

It follows from the fact that the system is flat that the 
feasible trajectories of the system are completely 
characterized by the motion of the center of mass of 
the X4-flyer. By converting the input constraints on 
the system to constraints on the curvature and higher 
derivatives of the motion of G , it is possible to 
compute efficient techniques for trajectory generation. 

 
4. STABILIZATION OF THE RELATIVE 

EQUILIBRIUM 
 
The relative equilibrium of the flying machine is 

subject of 0x y z= = =  and 0θ φ ψ= = = . It leads 
to θ φ 0= = , u mg=  and θ φ 0τ τ= = . In the 
following we stabilize an equilibrium of the form 
( 0 0 ψ )d d d dx y z, , , , ,  integrating motion planning. The 
flatness property of the system will serve for the 
trajectory planning between the given initial flat 
output ( ξi it, ) and the final one ( ξ f ft, ) where it  

and ft  are the initial and final time, respectively. As 
we have demonstrated in section III, we can write all 
trajectories ( ( ) ( )X t U t, ) satisfying the differential 
equation type (19) in terms of the flat output and its 
derivatives. In what following, we will see that time 
derivatives at fourth order of the flat output will be 
needed. In the simple stabilization control problem, i.e. 
without motion planning, time derivatives of the 
reference flat output are equal to zero. In our case, 
these derivations appear. Thus, our investigation can 
be viewed like case of tracking problem.  
At first, we assume that (θ φ) (0 0), ∈ ,  such that (17) 
can be transformed to 

 
θ

φ

ψ

θ,
φ,

,

,

,

.

mx u
my u
mz u mg

θ τ
φ τ
ψ τ

= −
=
= −

=

=

=

                         (21) 

4.1. Altitude z -stabilization and ψ -control 
The control of the vertical position (altitude) can be 

obtained considering the following control input  
 

 1 2( ) ( )z z
d dd mk z mk z zu mg z z− − − −= + ,  (22) 

 
where 1 2,z zk k  are the coefficients of stable 
polynomial and dz  is the desired altitude. 
The yaw attitude can be stabilized to a desired value 
with the following tracking feedback control  
 
 ψ ψ

ψ 1 2( ) (ψ ψ )dd dk kψψ ψτ = − − − − ,       (23) 
 

where ψ ψ
1 2,k k  are stable coefficients.  

Indeed, introducing (22) into (21), we obtain  

 
θ

φ
ψ ψ
1 2

( ( ))θ,
( ( ))φ,

( ),

,

,

( ) (ψ ψ ),

d

d

d

dd d

x g f z z
y g f z z
z f z z

k k

θ τ
φ τ

ψ ψψ ψ

= − + ,

= + ,

= ,

=

=

= − − − −

        (24) 

where the function 1( ) ( )z
d ddf z z k zz z, = − −  

2 ( )z
dk z z− −  is assumed to be regular wrt to their 

arguments.  
The following investigation concerns the system of 

the form  
 

 

θ

φ

( ( ))θ,
( ( ))φ,

( ),

,

,

d

d

d

x g f z z
y g f z z
z f z z

θ τ
φ τ

= − + ,

= + ,

= ,

=

=

                  (25)

 

 
which can be subdivided on two independent cascade 
dynamics, the first one is given by  
 

 
θ

( ( ))θ,

,
dx g f z z

θ τ

= − + ,

=
                    (26) 

 
and the second is 
 

 
φ

( ( ))φ,

.
dy g f z z

φ τ

= + ,

=
                     (27) 

 
Designing the control θτ  in the dynamic (26) 
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permits to stabilize (bound) the pitch angle which will 
be viewed as a control input for the x -motion. As 
soon as for (27), where φτ  will be determined and 
φ  is the input to stabilize the y -motion. 

 
4.2. x-stabilization and θ -control 

As the output x  is flat, then its dynamic is 
transformed in order to make appear the control θτ . 
Recall that  

 
 ( ( ))θdx g f z z= − + , .                    (28) 

 
When one derive twice this expression, we get  
 

(4)
θ( )θ 2 ( ) ( ( ))d d dx f z z f z z g f z zθ τ= − , − , − + , .(29) 

 
Proposition 2: By the fact that ( )dg f z z+ , 1

m u= , 
which is by hypothesis positif as 0u >  (see (3)), the 
asymptotic stability of x , consequently of θ  is 
asserted by (property of the flat output)  

 

θ
1 (ν ( )θ 2 ( ) )
( ) x d d

d
f z z f z z

g f z z
θτ = − + , + ,

+ ,
 (30) 

 
with  

 
(4) (3)(3)

1 2

3 4

ν ( ) ( )

( ) ( ),

x x
dx d d

x x
d d

x k x x k x x

k x k x xx

= − − − −

− − − −
     (31) 

where 1 2 3 4, , ,x x x xk k k k are positives and stable 
coefficients.  

Proof: Incorporating (30) into (29), it leads to the 
decoupled x -motion  

 

 
(4) νxx =                              (32) 

 
further, taking νx  as given in (31), x  and their 
successive time derivatives are asymptotically stable. 
It means, by virtue of the original system (17), θ  
reaches its equilibrium ( θ( ) 0ft = ).               

 
4.3. y -stabilization and φ -control 

As detailed above, φ  denotes the roll angle. This 
attitude has the same behavior like for θ . Roll allure 
is necessary to the X4-flyer to correct motion in the 
y -direction. These variables are related by the 

cascade system  

 
φ

( ( ))φ,

.
dy g f z z

φ τ

= + ,

=
                     (33) 

As before, we will proceed by four derivatives of the 
flat output y  with respect to time  
 

(4)
φ( )φ 2 ( ) ( ( )) .d d dy f z z f z z g f z zφ τ= , + , + + ,  (34) 

 
Proposition 3: By the fact that ( )dg f z z+ ,  1

m u= , 
which is by hypothesis positif definite as 0u > , the 
asymptotic stability of y , consequently of φ  is 
such that  

φ
1 (ν ( )φ 2 ( ) )
( ) y d d

d
f z z f z z

g f z z
φτ = − + , + ,

+ ,
(35) 

with  
 

(4) (3)(3)
1 2

3 4

ν ( ) ( )

( ) ( ),

y y
y dd d

y y
dd

y k y y k y y

k y k y yy

= − − − −

− − − −
       (36) 

 
where 1 2 3 4, , ,y y y yk k k k  are positives and stable 
coefficients.  

Proof: Incorporate (35) into (34), it leads to a 
decoupled y -motion  

 (4) ν yy =                              (37) 

further, tacking ν y  as given in (36), y  and their 
successive time derivatives are asymptotically stable. 
It means, by virtue of the original system (17), φ  
reaches its equilibrium (φ( ) 0ft = ).  

Remark 1: The proposed stabilizing controllers 
θτ  and φτ  involve the first and second time 

derivatives of ( )df z z, . We can easily calculate it 
from (22) and (17). Therefore, ( )df z z, =  

(3) 2
1 2 1 2(( ) )z z z z

z zdz k k k k ee+ − +  and (4)( )d df z z z, =  
3 2 3

1 1 2 1 2 2(( ) 2 ) (( ) ( ) )z z z z z z
z zk k k k k k ee− − − − . 

Remark 2: The new controllers shown in (31) and 
(36) involve the third time derivative of x  and y , 
respectively. Easily, this dynamic can be obtained 
from the X4-flyer initial equations (17), as  

 

 

(3) 1
θ θ

(3) 1
θ φ θ φ θ φ

( ),

( ).
m

m

x us uc

y uc s us s uc c

θ

θ φ

= − +

= − +
 

 
Terms involving the time derivative ( )du f z z= , , 

θ  and φ  should be measured or reconstructed from 
the flat properties of the system. However, the time 
derivative of ( )f .  was detailed in Remark 1. 
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5. TRAJECTORY GENERATION AND POINT 
TO POINT STEERING 

 
Due to the structure limit of the X4-flyer: motion 

can be asserted only in straight line along the x, y and 
z directions. In our case, that is sufficient to navigate 
in a region. Otherwise, an other version of the engine 
is under study by the group. The version flyer is to 
make easy maneuvers in corners with arc of circle. In 
the following, we solve the tracking problem as point 
to point steering one over a finite interval of time. 
Then we take each ending point with its final time as a 
new starting point. Fig. 4 illustrates the reference 
trajectory along the x, y and z directions. As we see, 
the X4-flyer will fly in the z-direction followed by the 
x -motion and the y -motion. The reference 
trajectory is parameterized as  

 

 
5

5 1 5( )
( )

r
d

f

tz t h
t T t

=
+ −

,                 (38) 

 
where dh  is the desired altitude and 1

fT  the final 
time. In order to solve the point to point steering 
control, the end point of the trajectory (38) can be 
adopted as initial point to move along x , then we 
have  
 

 
1 5

1 5 2 1 5

( )
( )

( ) ( ( ))
fr

d
f f f

t T
x t h

t T T t T

−
=

− + − −
.       (39) 

 
Identically for ( )ry t   
 

 
2 5

2 5 3 2 5

( )
( )

( ) ( ( ))
fr

d
f f f

t T
y t h

t T T t T

−
=

− + − −
.       (40) 

 

 
Fig. 4. Motion planning with 10dh m= . 

Constraints to perform these trajectories are such that  
 

1 2

1 2 3

1 2

1 2 3

1 2 3

1 2

(0) ( ) ( ) 0,

( ) ( ) ( ) ,

(0) ( ) ( ) 0,

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

(0) ( ) ( ) 0,

r r r
f f

r r r
f f f d

rrr
f f

rrr
f f f

rrr
f f f

rrr
f f

z x T y T

z T x T y T h

T Tyxz

T T Tyxz

T T Tyxz

T Tyxz

= = =

= = =

= = =

= = =

= = =

= = =

           (41)

 

 
minimizing the time of displacement implies that the 
X4-flyer accelerates at the beginning and decelerates 
at the arrival. 

 
5.1. Real time control and trajectory investigation 

From a experimental point of view, a joystick with 
three degrees of freedom for the X4-flyer animation 
will be considered. This material is interpreted as a 
commanded position signal helping the user to 
progress in hostile environment. The user will be 
informed about the vehicle positions by a visual 
feedback. The study of visual feedback involves 
image based visual servo control. This investigation 
would be the subject of future work. In this paragraph, 
we incorporate relations between torques, motor 
velocities and the command referenced positioning. 
Recall that the X4-flyer equipped with four brushless 
dc-motors which are commanded in voltages 
(currents) and not directly in torques. Brushless 
motors deliver high rate, largely boarded on mini 
flying machines. The variation of current permits to 
adjust speeds and forces given by relations (3) and 
(12). Feasible trajectories are subject of tests on limits 
and constraints related by (20). In order to interpret 
the control in term of velocities, recall that (3) and 
(12) permit to write  

 

2
1
2

θ 2 2
2φ 3
2ψ
4

ω1 1 1 1
τ 0 0 ω

ωτ 0 0 ω
τ 1 1 1 1

ω

u

l l
k k

l l

 
 
 
 
 
 
  
 

 
  
  − = ϒ 
 −  
   − −  

 

.     (42) 

The proposed control law in θ φ ψ( τ τ τ )u, , ,  gives 

an 2 2 2 2 2
1 2 3 4( )ω ω ω ω ω= , , ,  different of 2ωi  ( 1 4i = , ) 

developed by the actuators. Differences are due to the 
presence of motor dynamics which should be 
integrated to the system equations. Such an idea 
allows to control the system in velocities. To do so, let 
it be born in mind that the motor shaft dynamic is 
connected to the rigid body dynamics via the velocity 
component ( 1 4i = ,..., ) 
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 2τ ωir mi iI kω = − ,                      (43) 

where 4 12
1 Γω ij ji jk −
== ϒ∑  and we assume that 

ω ii ω= . The constant rI  represents the shaft inertia 
and τmi  is the torque transmitted by the shaft 
(assumed to be rigid). Perturbation due to frictions 
and/or backlash can be easily incorporated in the model. 
The following analysis shows that such an undesirable 
phenomenon influences accuracy in motion. Then it 
should be compensated by the control τm . 
Given the reference flat output with their derivatives 

3 4 5(ξ ξ ξ ξ )d d d dd dξ ξ, , , , , , the reference velocities 
obtained from (42) ( 0l k, > ) verify  
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,         (44) 

where du  is given by (20) with ξ  is replaced by 
ξd . The other elements of Γd  are in (15) where we 
substitute current states by the reference ones. 
Identically in (43); the shaft reference velocity should 
verify (ω idid ω= )  
 
 2τ ω

d
idr mi idI kω = − .                     (45) 

 
Therefore, we have  

 

2 2

1

( ) τ τ ( )ω ω

τ τ (Γ Γ )

d
dr m m d

d
m m d

I kω ω
−

− = − − −

= − − ϒ −  

with the proposed input τm   

 1
ωτ τ (Γ Γ ) (ω ω )d

m m d dk−= + ϒ − − −         (46) 

such that ω 0k > , we can assert the convergence of 

ω  to ωd . Moreover τ τd
m m→  and Γ Γd→ . 

 
6. SIMULATIONS 

 
Recall that the objectives consist in testing the point 

to point stabilizing configuration. What we need to 
compare is the tracking problem with and without 
motion planning. Motion generation is described here 
by an important and limited acceleration in ascent 
following with an important deceleration which 
permits to reach at ft  the desired point. The 

generated motion could satisfy ξ ( ) ( ) 0d i idt tξ= =  

and ξ ( ) ξd f dt = , ( ) 0fd tξ = . The final time ft  
shouldn’t be reduced enough to limit an excessive 
reference acceleration. Without motion planning ξd  
can’t be more then 1m , otherwise the system diverges. 
Tests have been effectuated as follows: for 
ξ ξ ( ) 1 ( 4 )d d f ft m t s= = =  (with and without motion 
planning) and ξ ( ) 10 ( 8 )d f ft m t s= =  (only with 

motion planning). All control parameters are 1 8zk = , 

2 1 2 31 2 316, 20, 150, 500y y yz x x xk k k k k k k= = = = = = =

and 4 4 625yxk k= = . The masse is 2m kg= . 
 

6.1. Results and comments 
Any equilibrium of the X4-flyer is defined by 

( 0 0 ψd d d dx y z, , , , , ). Let ξ ( ) 10d d d dx y z m, , = . To 
reach this configuration, an example of motion 
planning within the z -direction is given in Fig. 5. 
Motions along x y, -directions are similar to that of 
z . The last sub-figure shows that ( )df z z g, > − , 
then the validity of the proposed controllers. The 
derivatives dz  and dz  behavior are sketched in Fig. 
5. The allure of inputs (Fig. 6) shows that 0u >  and 
u mg=  when the X4-flyer reaches the relative 
equilibrium. In addition we show that the behavior of 
errors, given by Fig. 7 is verified. At the equilibrium, 
attitudes of φ( )ft  and θ( )ft  are equal to zero. 
Without motion planning, the system becomes 
instable and incapable to reach this configuration. To 
compare the flight with/without a predefined path, we 
will consider Figs. 8 and 10. Without motion planning, 
the amplitude of controllers is important (Fig. 10), 
chattering dominates the behavior of inputs when the 
system leaves its initial configuration. While with a 
predefined path a minimum of energy is asserted 
which is requested for flying vehicles. Motion in 
different directions z, x and y is also tested and shown 
by Fig. 12. With motion planning, we can assert a 
good behavior of the X4-flyer even in presence of 
drag forces. Drag forces ( 0 5 0 5 0 5x y z. , . , . ) influence 
motion along the x  and y  directions (Fig. 13), but 
with a good allure of motion. In order to guarantee 

π π
2 2θ [ ]∈ − ,  and π π

2 2φ [ ]∈ − , , robustness of θτ  and 

φτ  towards singularities should be deeply studied. 
Simulation tests are accomplished with Fig. 11, where 
we prove the well tracking of shafts velocities. Recall 
that these velocities are subject of motion planning 
integrating constraints of the system. The simulated 
parameters, and used in Fig. 11, are 1rI k= =  and 

ω 1000k = . 
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7. CONCLUSIONS 
 
We have presented a rotorcraft with streamlined 

four rotors. The dynamic model involves four control 
inputs used to stabilize the engine with predefined 
paths. The system presents a flat output which was 
efficiency exploited in motion planning, in point to 
point stabilization and in tracking control with respect 
to a region with ten-meter-buildings. It was shown 
that the algorithm is sensible to the necessary final-

time of the reference trajectory. Due to limits in 
autonomy of batteries in fly, acceleration/deceleration 
of the vehicle in motion is justified. The proposed 
control law is extended to the actuator dynamics 
which permits to control the shaft and the blade 
velocities. With the proposed motion planning, 
actuator saturations can be overcomed, consequently 
economy in energy of batteries can be asserted during 
the fly. This work will be extended to systems with 
delay and flatness based-visual feedback control.  

 
Fig. 5. Motion planning within the z-direction (hd = 10m). 

 

 
Fig. 6. Necessary inputs to stabilize (hd = 10m). 
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Fig. 7. Stabilization errors with motion planning (hd = 10m). 
 
 

 
 

Fig. 8. Inputs and tracking behaviors (hd = 1m). 
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Fig. 9. Tracking errors for (hd = 1m) without planning. 
 
 

 
 

Fig. 10. Necessary inputs to stabilize (hd = 1m) without motion planning. 
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