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Abstract: The paper deals with the stabilising control problem including
regulation of multi-vehicle formation systems. By hypothesis, a stabilising
control law leading to asymptotic/exponential formation’s stabilities
toward a target in an undisturbed environment is considered known.
However, a novel form of the formation’s control input resulting from
disturbed agents is emphasised. It is considered as a regulation control-
input for the system output regulation. The first part of the paper
gives conditions on the uniform asymptotic stability of undisturbed
systems with/without drift, and the second part shows the control
regulation of system paths while avoiding a set of fixed points. Under
an adjusted regulation control-input, the multi-vehicle formation system’s
convergence towards a set that surrounds the target is proved using
LaSalle’s invariance principle. The proposed stabilising control input is
smooth among different multi-robot navigation cases.
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1 Introduction

For control systems in the form ẋ = f(x, u) where x is the system’s state and u is
the control input vector, in the literature, researchers were interested in stabilising
of systems and leading to different objectives: asymptotic, uniformly asymptotic,
partial, in finite time, etc. To achieve such a result, the used methods involve
the following tools: Lyapunov function, LaSalle’s invariance principle, Barbalat’s
Lemma, sliding mode techniques, H∞ control, etc. In this paper, we are interested
in another feature form of the controller, called regulation control-input, leading
to the output regulation of the closed-loop system in the form ẋ = X (x, ν). ν is a
new function, referred to us as a regulation control-input for paths obtained from
X (x, ν). The subject of output regulation occupies an important role in modern as
well as classical theory. The basic problem addressed within output regulation is to
design a feedback controller, which internally stabilises a given non-linear system
such that the output of the resulting closed-loop system converges to objectives
even if external disturbances arise on its trajectory.

In conventional output regulation problem, the statement of the controller is
such that the regulation control-input, initiated in this work, can not be separated
from the original controller. Hence, we treat an output regulation problem but
we distinguish it from the conventional one through a regulation control-input,
which is considered here as a separable form, and it can be designed in a new
approach.
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The output regulation for linear plants is deeply studied in Saberi’s book (Saberi
et al., 2000). The non-linear case is treated by Isidori and Byrnes (1990); it is shown
that output regulation is locally under some external generator. However, the existence
of the controller was proved but no regulator’s separate form is given. From a
review of the literature, it seems that we can make the following observations for the
kinematic controllers of wheeled mobile robots: the stabilisation/tracking controllers
do not solve the regulation problem and there are some restrictions given on their
differentiability (see McCloskey and Murray, 1997). The regulation problem, related
to the kinematic/dynamic of a wheeled mobile robot, is studied by Dixon et al.
(2000), and where explicit sinusoidal terms with a tunable frequency are added to the
feedback controller. The added sinusoidal term by Dixon et al. (2000) has no physical
meaning. The receding horizon method is proposed by Gu and Hu (2006) where
two terms in the tracking controller are switched. Generally, the output regulation is
solved with motion planning methods associated with kinematic/dynamic models or
switching behaviours of the control-input. Note that such a disturbance for mobile
robot navigation is caused by obstacles.

The output regulation problem of mobile robots in groups was treated through
several strategies. One cites the attractive and repulsive artificial potential functions,
which are the mostly used in regulation control. It allows avoiding obstacles
and the non-occurrence of collisions between robots (Rimon and Kditschek,
1992; Ge and Cui, 2000a,b; Leonard and Fiorelli, 2009; El Kamel et al., 2009;
Kowalczyk et al., 2009; Dong et al., 2006; Essghaier et al., 2011). The null-space-
based behavioural approach was proposed by Arrichiello (2006). This method
leads to a coordinating behavioural response for conflict resolution including
obstacle avoidance, and where the obstacle-avoidance-task output generates the
appropriate velocity displacement. In term of smoothness of the obtained velocities
in Arrichiello (2006), it seems to be a competitive approach.

The objective of the paper is to solve the stabilising control problem including the
regulation with respect to some known obstacle’s positions with the guarantee of a
smooth control and without any motion planning. First, general theoretical results
are generalised for systems with and without drift terms. As a result, the obtained
control approach ensures the system stability around a desired position and the
repulsion of the latter over sets that materialise obstacles. Any form of application
will be concerned by our theoretical results including terrestrial and aerial vehicle
navigation in an approximatively known environment. Similarly, once planned, the
proposed regulation control-input may include inter-agent communications or other
shared resources. In terms of application, we considered the model of a unicycle-
type wheeled vehicle, regardless of orientation (non-holonomic case) and where the
environment contains obstacles. Contrary to results presented in the literature, which
are based on a switching control strategy for avoidance, our stabilising controller is
smooth and continuous over the navigation’s space.

The paper is oriented into 8 sections. The first section shows a motivating
example of the unicycle-like model, and defines the regulation control-input form.
Section 3 and 4 treat general cases of uniform asymptotic stability regulation
for systems with/without drift. In avoiding some of the sets while ensuring the
agent’s stability, our main regulation control-input is introduced in Section 5. The
multi-vehicle formation and the form of the regulation control input are detailed
in Section 6. An application to the rendezvous problem is detailed in Section 7.
Section 8 concludes the paper with comments.
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2 A motivating example

Let us consider the unicycle-like model, which is given by the following equivalent
system (see Pomet, 1992):

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2

(1)

x1, x2 and x3 are the variable states representing the linear and angular velocities,
respectively. u1 and u2 are obtained through some preliminary equivalent feedback
and denote the two unicycle control inputs. Also, it is an underactuated system
without drift. Let us consider system (1) in the form q̇ = P (q)u, q = (x1, x2, x3)T

and u = (u1, u2)T , T denotes the transpose and

P (q) =

 1 0
0 1
0 x1

 (2)

The unicycle system can be uniformly asymptotically stabilisable according to
Pomet (1992) by applying a time-varying feedback law in the form ua(q, t) =
(u1(q, t), u2(q, t)), with

u1(q, t) = x2 sin t − (x1 + x3 cos t)
u2(q, t) = −(x1 + x2 cos t)x1 cos t − (x1x2 + x3)

(3)

Under Pomet’s control law (3), the equilibrium asymptotic stability of the non-
autonomous system is asserted involving the following Lyapunov function V (t, q):

V (t, q) =
1
2
(x1 + x2 cos t)2 +

1
2
x2

2 +
1
2
x2

3 (4)

To illustrate the main idea developed in the paper, let us note that the trajectories,
as solutions of the controlled system, do not take into account restriction caused by
the environment. Such a constraint can be evolved by obstacles, generally belonging
to the robot navigation space. As we look to preserve the system stability, any
additional input could just modify solutions in the presence of a disturbance. Hence,
this additional term will be called regulation control input.

Let us compute the gradient of the Lyapunov function (4) with respect to the
unicycle variable states

∂V/∂x1 = x1 + x2 cos t

∂V/∂x2 = x1 cos t + x2(1 + cos2 t)
∂V/∂x3 = x3

(5)

For any given scalar function ν(q, t) : R
n → R, the following regulation control

input added to (3) will preserve the system stability at the origin,

ν(q, t)
(−x2(1 + cos2 t + x3) − x1

x1 + x2 cos t

)
(6)
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It is trivial to verify that the vector in brackets is orthogonal (⊥) to (∂V/∂q)T
P (q).

This last is given by

(∂V/∂q)T
P (q) =

(
x1 + x2 cos t

x2(1 + cos2 t + x3) + x1

)
(7)

Hence, the scalar product of these two vectors is equal to zero. One expects to
preserve the system stability at the origin (details are given in the following section).

We conclude the example by presenting the final form with the unchanged
Lyapunov function (4), associated to the unicycle control stability and regulation
at the origin

ũ1(q, t) = u1(q, t) + ν(q, t)(−x2(1 + cos2 t + x3) − x1)
ũ2(q, t) = u2(q, t) + ν(q, t)(x1 + x2 cos t)

(8)

The added input ν, considered as a regulation function, plays an important role in
the regulation process.

3 Regulation control input for driftless systems

Driftless systems are linear in control and take this general form:

q̇ =
m∑

i=1

fi(q)ui (9)

where q ∈ R
n and u = (u1, u2, u3, . . . , um)T ∈ R

m denote the state and the control
input of the system, respectively. Let a matrix P be formed by all the vector fields
fis. A compact form of system (9) is as follows:

q̇ = P (q)u (10)

In the literature, the stabilisation problem of (10) has been studied extensively,
including the results of Pomet (1992). Consequently, if the vectors f1(0), f2(0),
f3(0), . . . , fm(0) are linearly independent, then (10) failed Brokett’s necessary
conditions (Brokett, 1983). Hence, the system cannot be stabilised by a stationary
feedback law depending only on the system states. As an alternative, a time-varying
control law may guarantee the stability of the system at the origin (see also Beji
et al. (2003) for drift systems). The unicycle’s example given earlier shows the time-
varying stabilisation case. Now, adding the regulation control input, our main result
is given by the following theorem.

Theorem 3.1: Let D ⊂ R
n be a set that contains the equilibrium. One considers

q a solution of system (10) and V : R
n × [0, +∞[→ R the Lyapunov function

associated to ua(q, t) ∈ R
m, satisfying the following:

α1(q) ≤ V (q, t) ≤ α2(q)

∂V

∂t
+

∂V

∂q
P (q)ua(q, t) ≤ −α3(q)

(11)
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Such that for (q, t) ∈ D × [0, +∞[, α1, α2 and α3 are continuous and positive
definite functions in D. For all given function ν : R

n → R continuous in D, the
control law

u = ua(q, t) + ν

[[(
∂V

∂q

)t

P (q)
]T ]⊥

(12)

led to the uniform asymptotic stability towards a given target point of (10).

Proof: As the Lyapunov function V verifies the conditions (11), hence, the control
input ua for q̇ = P (q)ua(q, t) implies its uniform asymptotic stability. Using the
same function for system (10) with the control (12), under the hypothesis that the
inverse of P (q)PT (q) exists for q ∈ R

n, we get:

V̇ =
∂V

∂t
+

(
∂V

∂q

)T

P (q)u

=
∂V

∂t
+

(
∂V

∂q

)T

P (q)
[
ua + ν

[[(
∂V

∂q

)T

P (q)
]T ]⊥]

=
∂V

∂t
+

∂V

∂q
P (q)ua

(13)

which leads to the inequalities in (11). Consequently, for q solution of (10) under
the control input (12), the proposed function V verifies:

α1(q) ≤ V (q, t) ≤ α2(q)

∂V

∂t
+

∂V

∂q
P (q)(ua(q, t) + ν

[[(
∂V

∂q

)T

P (q)
]T ]⊥)

≤ −α3(q)
(14)

As a result, (10) and (12) lead to a uniform asymptotic stability result. This ends
the proof.

For the existence of a stationary feedback law associated to (10), we propose a
similar result given by the following theorem.

Theorem 3.2: Let D ⊂ R
n be a set that contains the equilibrium. Let ua(q)

an existent stationary feedback law for the equilibrium of (10) and V (q) the
Lyapunov function associated to q̇ = P (q)ua. For all scalar function ν: R

n → R,
continuous in D, the control input

u = ua + ν

[[(
∂V

∂q

)T

P (q)
]T ]⊥

(15)

ensures the asymptotic convergence of solutions of (10) towards the equilibrium.

Proof: Following Theorem 3.1, (10) is asymptotically stable under ua.
Consequently, from Kurzweil (1963), there exists a Lyapunov function V associated
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to q̇ = P (q)ua, meaning that V̇ =
(

∂V
∂q

)
P (q)ua < 0. Taking the same function for

system (10) and the control input (15), then

V̇ =
∂V

∂q
P (q)u

=
∂V

∂q
P (q)

[
ua + ν

[[(
∂V

∂q

)T

P (q)
]T ]⊥]

=
∂V

∂q
P (q)ua < 0

(16)

where we have considered that the inverse of P (q)PT (q) exists. The solutions
of (10) converge asymptotically to the desired ones.

4 Regulation control input for systems with drift

Systems with a drift term are also affine control systems to inputs:

q̇ =
m∑

i=1

fi(q)ui + g(q) (17)

where q ∈ R
n and u = (u1, u2, u3, . . . , um)T ∈ R

m represent the vector of states and
inputs, respectively. Analogy to the case of control systems without drift can be
made with a matrix P formed by the vector fields fis. Hence, the compact form
of (17) is as:

q̇ = P (q)u + g(q) (18)

The following results can be easily extended to systems with time invariant
stabilising control inputs. Let us introduce the stationary case.

Theorem 4.1: Let q be a solution of (18), V : R
n × [0, +∞[→ R the Lyapunov

function associated to ua(q, t) ∈ R
m must satisfy the following inequalities:

α1(q) ≤ V (q, t) ≤ α2(q)

∂V

∂t
+

∂V

∂q
(P (q)ua(q, t) + g(q)) ≤ −α3(q)

(19)

with ∀(q, t) ∈ D × [0, +∞[, α1, α2 and α3 are continuous and positive definite
functions in D. Any function ν : R

n → R added to

u = ua(q, t) + ν

[[(
∂V

∂q

)t

P (q)
]T ]⊥

(20)

ensure the uniform asymptotic stability of (18) for a predefined target point.
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Proof: Substitute (10) by (18) and the second condition of (11) by (19), the
procedure is similar to details of Theorem 3.1. If there exists a stationary control
input ua for system (18) with the associated Lyapunov function V (q) then the
results remain identical to Theorem 3.2. It means that the control input (15) will
guarantee the asymptotic stability of (18).

5 Control-regulation conditions avoiding a set of points

Recall that in the literature, the results were concentrated on the development of the
control input uas which enures the stability of the system around a fixed position or
trajectory. In our case, we assume that ua exists, hence, the equilibrium stability of
the undisturbed system is asserted. However, to ensure that the system’s solutions
avoid some undesirable set O, some conditions on the regulating control input ν
will be defined taking the system initial conditions in R

n\O.
To do, let us recall the following. The general form of the controlled system is

as follows:

q̇ = X (q, ν) (21)

where q ∈ R
n and ν is the regulation control input scalar function. The driftless

system case leads to (Theorems 3.1 and 3.2):

q̇ = P (q)
[
ua(q) + ν

[[(
∂V

∂q

)t

P (q)
]T ]⊥]

� X (q, ν)

(22)

The time-varying case X evolves as function of (q, ν, t). The system with drift is
considered as follows (Theorem 3.1):

q̇ = P (q)[ua(q) + ν

[[(
∂V

∂q

)t

P (q)
]T ]⊥]

+ g(q)

� X (q, ν)

(23)

Proposition 5.1: Let us consider the system (21), which evolves in R
n. For a

continuous ϕ : E ∈ R
n → F ∈ R and A as a compact set, one defines the set of

points to be avoided:

O = ϕ−1(A). (24)

Let N a submanifold in R
n\O, surrounding O (i.e., if U is in neighborhood of a

point of ∂O, then N ∩ U 	= ∅). If there exists a function ν(q) such that

ϕ(b + τX (b, ν)) ∈ CFÅ (25)

for all τ ∈ [0, 1] and b ∈ N ∪ ∂O, we have the following,

1 The integral curve of X (q, ν) from q0 = q(t0) ∈ N ∪ ∂O avoids O◦.
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2 If further X is locally Lipchitzian only on N ∪ ∂O, then the integral curve
of X (q, ν) from q0 = q(t0) ∈ R

n\O do not leave R
n\O.

Proof: If we want to study the value of the real solution at all T > 0, we assume
that we are working on an interval [0, T ] we divided into subintervals [tk, tk+1]
of length h = T

n for any integer n > 0, with tk = kh for k = 0, . . . , n and t0 = 0.
Consider a finite sequence (yk)k=0,... ,n defined by recurrence relation

yk+1 = yk + λhX (yk, νk) (26)

for k = 0, . . . , n − 1 and y0 = q0 ∈ N ∪ ∂O, and we consider qn : [0, T ] → R
2 the

piecewise affine function defined by qn(tk) = yk for all k ∈ N (i.e., qn(tk + λh) =
yk + λhX (yk, νk), λ ∈ [0, 1]).

Let us prove by recurrence that the sequence (yk) avoids O◦ for k = 0, . . . , n− 1:
Let y0 ∈ N ∪ ∂O then according to the hypothesis of the proposal, there exists a ν
which verifies ϕ(y0 + λhX (y0, ν0)) ∈ CF A◦ where ν(yk) = νk for k = 0, . . . , n − 1
hence ϕ(y1) ∈ CF A◦ ⇒ y1 ∈ CO◦ then


y1 ∈ N ∪ ∂O
or

y1 ∈ C(N ∪ O).
(27)

If you are in the first case where y1 ∈ N ∪ ∂O then according to the previous
proposal y2 ∈ CO◦. If you’re in the latter case then y2 = y1 + λhX (y1, ν1) where
λ  1 remains in C(N ∪ O) or enters in N ∪ ∂O, which implies that y2 is also in
CO◦. This is because if we assume by contradiction that y2 ∈ O◦ then there exists
an r > 0 such that B(y2, r) ⊂ O◦. But if we consider a y ∈ B(y2, r) we have:

‖y − y2‖ = ‖y − y1 − λhX (y1, ν1)‖ < r. (28)

Passing to the limit when λ → 0, the continuity of the norm, implies that ‖y − y1‖ ≤ r
which leads to B(y2, r) ⊂ B̄(y1, r) hence B(y2, r) ⊂ B(y1, r). But as these two
balls have the same radius, this implies that y1 = y2 ∈ O◦ which contradicts the
hypothesis of the second case.

Similarly if yk ∈ CO◦, then yk+1 ∈ CO◦.
Hence the sequence (yk) ⊂ CO◦ and qn(t) ∈ CO◦ for all t ∈ [0, T ]. This is true

for all n and it is well known (according to the Euler scheme) that the sequence
(qn(.)) converges uniformly on [0, T ] towards the solution of system (21) from the
q0 ∈ N ∪ ∂O.

As CO◦ is closed it means that the limit q(t) ∈ CO◦ for all t ∈ [0, T ]. This is
true for all T > 0, hence the integral curve of system (21) avoids O◦.

Now, if the vector field X (q, ν) is locally Lipchitzian only on N ∪ ∂O, the
theorem of Cauchy-Lipschitz guarantees that the solution is unique in N ∪ ∂O.
Hence, if an integral curve γ(t) of X (q, ν), starting from q(t0) ∈ R

n\O, goes in
N ∪ ∂O, then γ(t) restricted to N ∪ ∂O, coincides with one of curves starting from
N ∪ ∂O. Then γ(t) avoids O◦.
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6 Multi-mobile robot control and regulation

One considers a multi-mobile robot system in formation under a shared
information. Unlike the case of a single robot, the convergence of the formation
must be to a set of points and this complicates the control task. Our stability
results are based on the invariant principle of LaSalle, and the system’s convergence
involves multiple objectives. This last is built around the target and must avoid the
set O.

Let us recall the kinematics of n vehicles:

q̇ = u (29)

where q ∈ R
2n regroups the states and u ∈ R

2n is the set of inputs. The proposed
approach will subsequently be extended to multi-agent systems cases while for
a single robot, it implies the stabilisation towards only one target. Similarly,
we will take into account the formation’s navigation in a disturbed environment
by obstacles and consider collisions between agents. Consequently, the stabilising
controller will be increased by other terms that ensure the regulation of each vehicle
trajectory and maintain the formation’s stability.

Definition 6.1 (Invariant Set): Ω is an invariant set for the system ẋ = f(x) if
each trajectory x(t) starting in Ω remains over time in Ω.

Theorem 6.2: For the system (29) where q ∈ Ω ⊂ R
2n, assume that ∃ua/u = ua

stabilises (29) in a free environment and

Ω = {q ∈ R
2n/0 ≤ V (q) ≤ p} (30)

is an invariant set with respect to q̇ = ua, and V : R
2n → R+ such that ∇qV ua ≤ 0.

The control input for the multi-vehicle formation,

u = ua −


ν1(q) 0 . . .

0
. . .

... 0 νn(q)

 ⊗ I2



(
(∇qV )x1

(∇qV )y1

)⊥

...(
(∇qV )xn

(∇qV )yn

)⊥


(31)

ensures that the states of (29) converge to the set Ω. ⊗ denotes the
Kronecker product, I2 the identity matrix ∈ M2×2(R), νi : R

2n → R, and ∇qV =
[(∇qV )x1 , (∇qVy1 , . . . , (∇qV )xn

, (∇qV )yn
].

Proof: The set Ω = {q ∈ R
2n/0 ≤ V (q) ≤ p)} is invariant with respect to q̇ = ua

and V verifies V̇ = ∇qV ua ≤ 0. The LaSalle’s theorem (see Khalil, 2001) implies



Regulation control-inputs 365

that the solutions converge to the great invariant set E = {q ∈ R
2n/V̇ = 0}. Using

the same function V for (29,31), the time derivative is given by:

V̇ =
∂V

∂q
q̇

=
∂V

∂q
ua − ∂V

∂q
M ⊗ I2

F⊥
1
...

F⊥
n

 (32)

with Fi =
(

(∇qV )xi

(∇qV )yi

)
. M is a diagonal matrix whose terms are the components of

ν = [ν1(q), ν2(q), . . . νn(q)]. The matrix corresponding to M ⊗ I2 is given by:

M ⊗ I2 =


A1 0 . . .

0
. . .

...
... 0 An

 ; Ai =
(

νi 0
0 νi

)

The quantity

∂V

∂q
M ⊗ I2

F⊥
1
...

F⊥
n

 =
n∑

i=1

F t
i AiF

⊥
i = νiF

t
i F⊥

i = 0 (33)

It is obvious to show,

V̇ =
∂V

∂q
ua ≤ 0 (34)

Hence, Ω = {q ∈ R
2n/0 ≤ V (q) ≤ V (q0)} is invariant for the solutions of (29), (31).

Thus, the system (29), (31) states converge to the great invariant set of E. This ends
the proof.

7 Application: decentralised control for the rendezvous problem

Let us consider a family of n agents in 2D-space, and a target C = (Cx, Cy),
assumed to be fixed. To C we attach a fixed frame, which is considered as an
inertial frame. Let O = (Ox, Oy) denotes the coordinate of an unmoving obstacle
(Figure 1). The agents’ kinematics is described by:

q̇ = u (35)

where q = (q1, q2, . . . , qn) ∈ R
2n and u = (u1, u2, . . . , un) ∈ R

2n. From
Theorem 6.2, our aim is to find a control ua that stabilises the formation and
express the regulation control input ν, which permits to avoid some localised
obstacles.
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Figure 1 Agent parameterised by angles θ and α (see online version for colours)

7.1 Stabilising control input

For system (35), the stabilising control input vector is formed by each agent’s
stabilising input vector,

ua = (ua1, ua2, . . . , uan)

Proposition 7.1: For n agents with kinematics (35), the stabilising controller

ui = uai (36)

where

uai = −(‖ qi − C ‖2 −l2)(qi − C) (37)

and the initial position qi0 ∈ Ω with Ω ⊂ R
2n, and

Ω = {q ∈ R
2n/l ≤‖ qi − C ‖≤ K}

ua = (ua1, ua2, . . . , uan) ensures that the solutions of (35), (37) converge towards
the set M :

M = {q ∈ Ω/ ‖ qi − C ‖= l}

with K ≥‖ qi0 − C ‖.

The proof of Proposition 7.1 is based on LaSalle’s theorem. The following lemmas
are introduced such that Lemma 7.2 permits to verify that Ω is invariant to (35),
(37). Lemma 7.3 shows the adequate decreasing function V . Finally, Lemma 7.4
determines the great invariant set M , which is also the equilibrium set of the system.

Lemma 7.2: The Ω = {q ∈ R
2n/l ≤‖ qi − C ‖≤ K} set is invariant over time for

(35), (37). Furthermore, Ω is compact.
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Proof: Assume that q0 ∈ Ω and consider the function

S(qi) = (‖ qi − C ‖2 −l2) (38)

The time derivative of S(qi) throughout the trajectory of (35), (37) is given by

Ṡ(qi) = 2 < q̇i, qi − C >

= 2 < ui, qi − C >

= −2(‖ qi − C ‖2 −l2) ‖ qi − C ‖2

= −2S(qi)(S(qi) + l2)

(39)

Consequently,

S(qi)
S(qi) + l2

=
S(qi0)

S(qi0) + l2
exp(−2l2(t − t0)) (40)

As S(qi0) =‖ qi0 − C ‖2 −l2 ≥ 0 This is from qi0 ∈ Ω, then

S(qi) =‖ qi − C ‖2 −l2 ≥ 0 ⇔‖ qi − C ‖≥ l (41)

On the other hand, let F (qi) such that:

F (qi) =‖ qi − C ‖2 (42)

The differential of F with respect to time t is as:

Ḟ (qi) = 2 < q̇i, qi − C >

= 2 < ui, qi − C >

= −2(‖ qi − C ‖2 −l2) ‖ qi − C ‖2
(43)

It is obvious that Ḟ (qi) ≤ 0, then F is a decreasing function. This means that

‖ qi − C ‖≤‖ qi0 − C ‖≤ K (44)

As a result, if q0 ∈ Ω then q ∈ Ω.

Lemma 7.3: Consider the vector q with formed by solutions of (35), (37). The
differential of the following function V with respect to t

V (q) =
n∑

i=1

(‖ qi − C ‖2 −l2) (45)

is negative with respect to the set Ω,

Proof: The time derivative of V throughout the trajectory of (35) with the given
control input in Proposition 7.1 leads to:

V̇ (q) =
n∑

i=1

< q̇i, qi − C >

= −
n∑

i=1

(‖ qi − C ‖2 −l2) ‖ qi − C ‖2

(46)
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As q0 ∈ Ω, and Ω is invariant for (35), (37), then q ∈ Ω. As a result (‖ qi − C ‖2

−l2) ≥ 0, consequently V̇ (q) ≤ 0.

Lemma 7.4: Consider the vector q with its components the solutions of (35), (37),
then

M = {q ∈ Ω/ ‖ qi − C ‖= l} (47)

is the great invariant set in E = {q ∈ Ω/V̇ = 0}.

Proof: From the time derivative of V reduced to zero,

V̇ (q) = −
n∑

i=1

(‖ qi − C ‖2 −l2) ‖ qi − C ‖2= 0

we get

E = {‖ qi − C ‖= l} = M (48)

As q ∈ Ω, let q0 ∈ M and S(qi) =‖ qi − C ‖2 −l2, from the proof of Lemma 7.2,

S(qi)
S(qi) + l2

=
S(qi0)

S(qi0) + l2
exp(−2l2(t − t0)) (49)

q0 ∈ M then S(qi0) = 0, which implies that S(qi) =‖ qi − C ‖2 −l2 = 0.
Consequently, q ∈ M representing the great invariant set of E. The above-
mentioned results contribute to the proof of Proposition 7.1 and it will be achieved
in the following step.

Proof (Proposition 7.1): Following proofs given in Lemmas 7.2, 7.3, and 7.4, Ω
is invariant with respect to (35), (37). Furthermore, V̇ ≤ 0 in Ω. From LaSalle’s
theorem, each solution of (35), (37) that admits initial conditions in Ω converge to
M as t → ∞. The set M is given by Lemma 7.4, which is the great invariant set of
E = {q ∈ Ω/V̇ = 0}. This ends the proof.

Our first constat is achieved by the expressions given to the control input
ua = [ua1 , ua2 , . . . , uan ] (Proposition 7.1), i.e., the convergence of each agent to a
circle surrounding the target without any motion planning. It remains to ensure
that the formation does not reenter in collision with obstacles.

7.2 Regulation control input for the formation

In the following theorem, we give a regulation control input that ensures the
convergence of each agent to a point on a circle, considered as an attractive set,
centred by the target. The avoidance of obstacles in the plan will be also considered.

Theorem 7.5: Consider the set

Ω = {q ∈ R
2n/l ≤‖ qi − C ‖≤ K}
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The n agents are represented by system (35), defined in Ω. Let q0 = (x0, y0)
denotes the initial positions at time t = t0, and L(x) = Oy

Ox
x be the function

associated to the line joining the centre of the attractive set C(Cx, Cy) and
O(Ox, Oy). O denotes the centre that surrounds the obstacle. The control input,

ui = uai + νi(qi − C)⊥ (50)

where

uai = −(‖ qi − C ‖2 −l2)(qi − C) (51)

and

νi = −sign([yi0 − L(xi0)][Cx − Ox])
‖qi − Oqi‖

(‖ qi − C ‖2 −l2) (52)

for all initial conditions in Ω, converge the solutions of (35), (50), (51), (52)
towards M with

M = {q ∈ Ω/ ‖ qi − C ‖= l}

and K ≥‖ qi0 − C ‖. Moreover, the ith agent avoids the time-varying point Oqi .

Proof: We have

Ω = {q ∈ R
2n/l ≤‖ qi − C ‖≤ K}

= {q ∈ R
2n/0 ≤‖ qi − C ‖2 −l2 ≤ K2 − l2}

= {q ∈ R
2n/0 ≤ V (q) ≤ p � K2 − l2}

(53)

From Lemmas 7.2 and 7.3, Ω is invariant, V̇ ≤ 0 with respect to (35), (37), and
∂V

∂q
= q − C. Following Theorem 6.2 the system’s (35), (50), (51), (52), (35) and (37)

solutions approach the same sets. On the other hand, following Proposition 7.1, the
solutions of (35,37) converge towards M , consequently the system’s solutions (35),
(50), (51), (52) converge towards M . M is none other than the circle of centre C
and radius r.

It remains to prove that the ith agent avoids Oqi . To do, we have to analyse
the results of Proposition 5.1. In closed loop, the decentralised control including
the regulation problem is expressed by:

q̇ = −(‖ q − C ‖2 −l2)(q − C) + ν(q − C)⊥

� X (q, ν(q))
(54)

where ν is given by (52). It is obvious to show that for all q ∈ N = {q ∈ R
2/r <

‖q − O‖ < ε} with ε < ‖O‖ and for all τ ∈ [0, 1], q verifies the following inequality:

‖q − O + τX (q, ν)‖ ≥ ‖q − O‖ > r
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Consequently, ∀ P ∈ O, O denotes the disc of centre O and radius r,

P 	= q + τX (q, ν) ⇔ q − P 	= −τX (q, ν)

From Proposition 5.1, the function ν ensures that the integral curve X (q, ν)
resulting from q(t0) ∈ N is in N for a time sufficiently small, and returns in
the variety R

2\O. Furthermore, it is straightforward to prove that X (q, ν) is
Lipschitzian in N , consequently Proposition 5.1 guarantees that all integral curves
resulting from q(t0) ∈ R

2\O remain in R
2\O. This ends the proof.

In addition to the stability and regulation results presented earlier, the following
corollaries guarantee that each agent’s trajectory obeys to the invariance property
of each navigation sub-plan. We have to prove the following: if an agent is
initialised into a region defined by the half-plan, over time, it remains there until
the target is reached. Furthermore, the obstacle avoidance will be ensured within
the adequate region.

Corollary 7.1: The following two subsets K and H , dividing the navigation plan
into two navigation’s regions, are invariant with respect to systems (35), (50),
(51), (52),

KI = {q(x, y) ∈ Ω/y ≥ L(x)}
HI = {q(x, y) ∈ Ω/y < L(x)} (55)

L(x) is the line that joints the target and the obstacle and Ω = {q ∈ R
2n/0 ≤

V (q) ≤ p}.

Proof: From (50)–(52), the ith agent’s kinematic (35) becomes:

q̇i = −qi(‖ qi ‖2 −l2) + νiq
⊥
i (56)

Using the polar coordinate transformation, system (56) obeys to the following
differential system:

ρ̇i = −(ρ2
i − l2)ρi

θ̇i = νi

(57)

The θi state represents the angle from
−→
Cqi and the horizontal (Figure 2). Also, one

introduces α, which denotes the angle between L(x) and the horizontal. From (57),
the behaviour of θ depends on terms in sign(.) function of (52). One distinguishes
4 cases.

-1st case If Cx ≥ Ox, one obtains 2 cases

1/ if yi0 ≥ L(xi0) θ̇i = − ρ2
i −l2

|
√

(ρi cos θi−Ox)2+(ρi sin θi−Oy)2−r|
≤ 0, then θi ≤ θi0. On the

other hand, as yi0 ≥ L(xi0), which implies that θi ≤ θi0 ≤ α, then ∀ t, the state q(t)
remains into the half superior plan defined by L(x). One proves that yi ≥ L(xi).

2/If yi0 ≤ L(xi0) then θ̇i ≥ 0, consequently, θi ≥ θi0. Furthermore, yi0 ≤ L(xi0),
which implies that θi ≥ θi0 ≥ α, i.e., q belongs to the half superior plan defined by
L(x). One proves y ≤ L(x).
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Figure 2 The invariant subsets K and H (see online version for colours)

-2nd case If Cx ≤ Ox

Similarly, we emphasise two cases.

3/ If yi0 ≥ L(xi0), θ̇i ≤ 0, and the result given by 1/ in the 1stcase, we have yi ≥
L(xi).

4/ If yi0 ≤ L(xi0), the same analysis can be adopted as given in 2/-1stcase, then
yi ≤ L(xi).

These four cases lead to the following, if yi0 ≥ L(xi0) (resp. yi0 < L(xi0)) then
yi ≥ L(xi) (resp. yi < L(xi)) ∀t ∈ [0, +∞[. Finally, one concludes that K and H are
invariant for the system (35), (50), (51), (52). The proposed regulation control input
ensures that the agents avoid the obstacles while staying on the invariant subset
defined earlier. These subsets are determined with respect to the initial position of
each agent.

7.3 Simulation results

To confirm the obtained theoretical results, one simulates the trajectories obtained
from (35) under the proposed control law including regulation, given by (50), (51),
(52). The analysis of the formation’s stability integrates six agents initially scattered
in the navigation plan, and one known obstacle is also incorporated in the plan.
The simulation is sketched in Figure 3. The six agents avoid the obstacle, while
converging to a position near to the target, which is a circle like an attractive
set. This shows the effectiveness of results given by Theorem 7.5. The proposed
regulation control input ensures that each agent avoids the obstacle while staying
on the invariant subset defined by (55). Recall that these subsets are determined
with respect to the line connecting the centres of circles containing the obstacle
and the target. To preserve collisions between agents, it remains to solve the
communication problem. The connection inspired from the graph theory can take
into account the behaviour of the multi-agent formation, which is also another
problem of regulation and it can take part in the conception of the ν function.
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Figure 3 Six agents stabilisation around a triangle like an objective (see online version
for colours)

8 Conclusion

For multi-vehicle navigation including regulations with respect to some predefined
obstacles, the stabilising control problem is solved analytically in a decentralised
form and proved throughout LaSalle’s invariance principle and the Lyapunov
theory. Compared with a single robot’s stabilisation problem, which implies the
convergence towards only one target, the group’s stabilisation is reasserted towards
a set of targets. Under the proposed regulation control-input, the set’s invariance
is shown and it can be adjusted with respect to the objective and the navigation
environment. After initially scattered in the navigation plan, each agent moves
towards the attractive set circumscribing the target while it avoids the obstacle
and two subsets subdividing the environment plan are shown invariants. As an
agent will move towards the appropriate navigation’s subsets, this will limit energy
consumptions. It remains to integrate in a novel form of the regulation control-
input strong interconnections between agents and collisions.
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