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Abstract: One studies the tracking control problem in various navi-
gation planes of an unmanned aerial vehicle of blimp type. The coupled
dynamic equations of the blimp including the kinematics are distributed
into the blimp’s three geometric planes. The navigation control inputs
take into account the effect of the added matrix extra-diagonal terms
which are resulting from the non coincidence of the buoyancy and the
gravity centres. With respect to the two geometrical planes, we prove
that the dynamic of the blimp is flat and flatness based tracking con-
troller is suggested. The backstepping techniques is followed in the hori-
zontal plane to ensure the tracking of the blimp’s trimmed flight. Simu-
lations are presented to confirm the effectiveness of the tracking control
schemes including drag forces.

Keywords: blimp; distributed flight dynamics; trimmed flight; non-
linear control

Biographical Notes:

Azgal Abichou received the Ph.D. degree in 1993 from Ecole des Mines
de Paris, France, in Mathematics and Control theory. He held attached
researcher at Systems and Control Lab : CAS (Centre Automatique
et Systmes), Ecole des Mines de Paris and he is currently Professor
of Mathematics at ESSAI, Tunisia. His research interests include non-
linear control of mechanical systems, robotics (hydraulic and parallel),
control system analysis and design tools for underactuated systems with
applications to space and aerospace vehicles.

Lotfi Beji received the Ph.D. degree in 1997 and the Habilitation de-
gree in 2009 from the University of Evry, France. he is currently an
Associate Professor at the UFRST Engineering Department and the
IBISC Laboratory FRE CNRS 3190. During the period 1994-1997, he
worked in modeling and control of parallel robots. Since 1998, his re-
search domain is the control of terrestrial and aerial vehicles including
the behavior of multi-vehicles in formation.

Sarra Samaali received the Ph.D. in 2007 from the University of Evry,
France. She is currently with the LIM Laboratory, Polytechnic School
of Tunisia, her research domain is the vehicles modeling and control.

Copyright c© 200x Inderscience Enterprises Ltd.



2 A.Abichou et al.

1 Introduction

The dynamic analysis and control of aerial vehicles is a challenging problem.
Their capability is considerable in increasing the manoeuvrability for tasks such as
transportation, surveillance and military applications, for airships, we quotes the
escort of ships and also the detection of mines and under-sailors [14] [3] [6] [4] [13]
[15]. However, heaviest that the air quickly beat lightest that the air. The ratio
(distance, time of flight, altitude...) constitutes a state favorable for the planes that
the airships. But there remain still applications for where airships always have an
ecological and economic operational advantage. Nevertheless, the exploitation of
the airships in the whole world is still very weak compared to the other air vehicles.
They are even criticized to be creates only for promotional activities, such as for
cruising or leisure flights. All the other awaited results depend strongly on the tech-
nological developments directed by the academic and industrial community which
has as a common objective: the improvement of the airships in order to better
exploit them in various fields.

In order ro characterize an airship and its needs in energy, various prototypes
of airships were developed in several geometrical forms: such as the shapes of en-
velopes, cigar, hybrid and spherical wings. The airship is a means of transport
which has the capacity to move very heavy loads with a minimum of mechanical
default risk which is less critical for a plane. An airship is also more practical as
the other flying vehicles because it can land practically anywhere.
Airships are member of family of under-actuated systems, because they have fewer
inputs than degrees of freedom. The unactuated dynamics implies constraints on
the accelerations. To maintain the balancing of the airship [9] [10], two principal
propeller engines are used: the directional engines (propellers with tilt angle), as-
sembled in a symmetrical way on two sides of the nacelle placed below the hull,
which can control displacements in advance, back, the rise and the descent. There
are also the ailerons which are placed in the back of the vehicle and have to control
the yaw/pitch movement. In addition, for an aerostatic mode of fly (a slow flight
which is sensitive to the external disturbances) and a quasi instantaneous rotation,
a third propeller engine is placed on a vertical aileron acting as a rotor of tail (tail
thruster).

In some studies such as [5] [6], motion is referenced to a system of orthogonal
body axes located in the airship. The model used was written originally for a buoy-
ant underwater vehicle [5]. It was modified later to take into account the specificity
of the airship [6]. In this paper, we propose to control the model given in [2]. This
dynamic model has the particularity that the origin of the airship fixed frame is
located in the center of gravity, while in the cited works, it is located in the center
of buoyancy. Recall that the center of buoyancy is the center of the airship volume.

There were some results in studying the control of the full nonlinear kino-
dynamic model of a blimp in term of the positioning control problem of both
position and attitude to fixed constant values by Beji [7]. Complementarily, the
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tracking control of an helix, like an equilibrium trajectory for ascent and descent
maneuvers, was studied by Beji [8]. Because of nonlinearities and highly coupled
equations, the tracking of a general feasible trajectory, different from that of the
equilibrium, led us to distribute the blimp kino-dynamic model into various planes.
In some planes the controllability of the system is proved and the adequate tracking
controller is proposed.
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Figure 1 Airship fixed and earth frames

2 Flight decomposition of a blimp

In the aeronautic fields, it is common to decouple the flights of an aerial vehicle
[1]. In order to reduce the highly coupled equations and nonlinearities, we chose to
distribute the kino-dynamic model according to the three geometrical planes, called
longitudinal, horizontal and lateral. Following this idea, it is possible to extract
from the model of a blimp, three subsystems which correspond to the following
analysis:

• In the longitudinal plane PXGZ the dynamic of the blimp is described by
the local velocity components u (longitudinal), w (lift) and q (pitch). The following
state vectors are introduced ηlong = (x, θ, z)T and νlong = (u, q, w)T . Hence, the
dynamics associated to roll p, yaw r and lateral v are eliminated and considered
like disturbances.

• The horizontal PXGY dynamics is described by the longitudinal motion
u, lateral v and yaw r. The considered states are ηhor = (x, y, ψ)T and νhor =
(u, v, r)T . Consequently, the (p, w, q) motions are not considered in this plane.

• The motion in the lateral plane PY GZ is subject to the lift w, lateral v and
roll p components. The states ηlat = (y, z, φ)T and νlat = (v, w, p)T are taken into
account to the control analysis in this plane. Hence, the dynamics associated to
(u, q, r) are not considered.

The notation used for the airship are given in the following chart (see table 1).
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Figure 2 Presentation of inputs τ1 and τ3

where F1 and F2 input forces developed by the two electric actuators. Let
τ1 = (F1 + F2)cosµ and τ3 = −(F1 + F2)sinµ the inputs which are necessary for
both moving the blimp backward and forward also moving it up and down (figure
2). µ gives an oriented direction to actuators which is limited.

3 Trajectory tracking in the longitudinal plane P(XGZ)

Following to the subsequent analysis, the dynamic of the blimp in the longitu-
dinal plane P(XGZ) is reduced to the following model

ẋ = u

θ̇ = q

ż = w

mxu̇−Xẇẇ = Xuu + (FB − FG)θ + τ1(1)
mzẇ − Zu̇u̇ = Zww − (FB − FG) + τ3

q̇ =
1
Jy

(Mqq + FBzbθ + GO1zτ1)

where we have supposed that the pitch attitude remains in a neighborhood
of zero θ ∈ ϑ(0) and a weak displacement in speeds of the blimp such that the

Table 1 Notations used for the blimp

Linear and angular Positions and Euler
velocities angles

motion in the x-direction (surge) u x

motion in the y-direction (sway) v y

motion in the z-direction (heave) w z

rotation about the x-direction (roll) p φ

rotation about the y-direction (pitch) q θ

rotation about the z-direction (yaw) r ψ

.
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quadratic terms in velocities (gyroscopics) are negligible. In system (1), the extra-
diagonal terms due to the added mass matrix Xẇ and Zu̇ introduce coupling be-
tween the accelerations. Further, mx = m−Xu̇, my = m− Yv̇ and mz = m− Zẇ

are the inertial terms including the inertia of air added masses. As soon as for
Jx = IGX , Jy = IGY − Mq̇ and Jz = IGZ − Nṙ which represent the rotational
part of inertias with IGX is the principal element of inertia around the GX axis.
Mq̇ denotes the added mass element. m is the blimp’s mass, FB and FG are the
buoyancy and gravity forces, respectively. GO1z denotes the O1 position along the
Z-axis. zb is such that GC = (0, 0, zb)T , position vector of the buoyancy center
w.r.t. G. All these standard notations can be found in [9] [5] [7].

Now, we introduce the following change of variables and consider mxmz −
XẇZu̇ 6= 0

U = mxu−Xẇw

W = mzw − Zu̇u(2)

Consequently, the system takes this form

ẋ = αU + βW

θ̇ = q

ż = α1U + β1W

U̇ = Xuẋ + (FB − FG)θ + τ1

Ẇ = Zwż + τ̄3

q̇ =
1
Jy

(Mqq + FBzbθ + GO1zτ1)(3)

where the new controller to be proposed later is τ̄3 = τ3 − (FB − FG), α = mz

∆ ,
β = Xẇ

∆ , α1 = Zu̇

∆ , β1 = mx

∆ and ∆ = mxmz −XẇZu̇.

Lemma 1 Under constant parameter values of the blimp, the linear dynamic model
in P(XGZ) (3) is controllable and takes the Brunowsky’s form, consequently the
system is flat. Further the number of flat outputs is equal to the system inputs.

Proof. First, we will test the controllability of the system which can be written
in the form χ̇ = Aχ + B(τ1, τ̄3) with χ = (x, θ, z, U,W, q)T . The linear applications
A : IR6 → IR6 and B : IR6 → IR2

A =




0 0 0 α β 0
0 0 0 0 0 1
0 0 0 α1 β1 0
0 FB − FG 0 Xuα Xuβ 0
0 0 0 Zwα1 Zwβ1 0
0 FBzb

Jy
0 0 0 Mq

Jy




; B =




0 0
0 0
0 0
1 0
0 1

GO1z

Jy
0




by writing the Commandability matrix C = (B, AB, A2B, · · · , A5B), one ver-
ifies that its rank is equal to six (number of states). Hence, Kalman’s criterion
is verified and the studied model is commandable using a continuous static state
feedback law. Then, there exists the Brunovsky’s form with two outputs (more
details are in [12, 16]), said flat-output, which are equal in number to the systems’s
inputs (τ1, τ3) (see eq.(3)). For instance, recall the following theorem.
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Theorem 1 (Brunovsky’s form)[12, 16]: For the system χ̇ = Aχ + Bu, if the
commandability matrix C = (B, AB, · · · , An−1B) is such that rank(C) = dim(χ) =
n and if rank(B) = dim(u) = m then there exists a transformation of the form
z = Mχ (M is an n × n invertible matrix) and a continuous static feedback law
u = Kz + Nv (N is an m ×m invertible matrix), such that in term of (z, v), we
have this form (m differential equations of order ≥ 1):

y(α1) = v1, ..., y
(αm) = vm

having like state

z = (y1; y
(1)
1 , ..., y

(α1−1)
1 , ..., ym; y(1)

m , ..., y
(αm−1)
m )

The αi being positive integers. The m quantities yj are linear combinations of the
state χ, are called Brunovsky’s output.

Let us construct the Brunovsky’s form and deduce the two flat-outputs of the
system. The derivative of the first three equations from (3) with respect to time
gives

ẍ = α(Xuẋ + (FB − FG)θ + τ1) + βτ4

θ̈ =
1
Jy

(Mq θ̇ + FBzbθ + GO1zτ1)(4)

z̈ = α1(Xuẋ + (FB − FG)θ + τ1) + β1τ4

where τ4 = Zwż + τ̄3.
In order to make appear one input into each equation, we consider two regular

transformations. The first one is given by




x1

θ
z1


 =




1 −α
Jy

GO1z
0

0 1 0
0−α1

Jy

GO1z
1







x
θ
z


(5)

leading to

ẍ1 = αXuẋ1 + D1θ + D2θ̇ + βτ4

θ̈ = τθ(6)
z̈1 = α1Xuẋ1 + D3θ + D4θ̇ + β1τ4

with

D1 = α(FB − FG)− α
FBzb

GO1z
; D2 =

α

GO1z
(αXuJy −Mq)

D3 = α1(FB − FG)− α1
FBzb

GO1z
; D4 =

α1

GO1z
(αXuJy −Mq)

τθ =
1
Jy

(Mq θ̇ + FBzbθ + GO1zτ1)
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The second regular transformation is incorporated in objective to have the input
τ4 in one equation. Hence,




x1

θ
z2


 =




1 0 0
0 1 0
−β1

β 0 1







x1

θ
z1


(7)

which permits to write this final basic system (7),

ẍ1 = τx1

θ̈ = τθ(8)
z̈2 = δ1ẋ1 + δ2θ + δ3θ̇

with τx1 = αXuẋ1 + D1θ + D2θ̇ + βτ4, δ1 = α1Xu − β1
β αXu, δ2 = D3 − β1

β D1

and δ3 = D4 − β1
β D2. τθ is given above. We construct the Brunovsky’s outputs y1,

y2 such that (δ1, δ2, δ3 are considered 6= 0).

y1 =−δ1x1 − δ3θ − δ2

δ3
z2 + ż2

y2 = 2δ1x1 + 2δ3θ +
δ2

δ3
z2 − 2ż2(9)

Using relations (9) and the time derivative of (9) at order 3, in terms of the
Brunovsky’s outputs (flat-outputs), the system’s (7) states and inputs take this
form,




x1

ẋ1

θ

θ̇
z2

ż2

τx1

τθ




=




1
δ1

− δ3
δ1δ2

0 0 1
δ1

0 0 0
0 1

δ1
− δ3

δ1δ2
0 0 1

δ1
0 0

0 − 1
δ2

0 0 0 − 1
δ2

0 0
0 0 − 1

δ2
0 0 0 − 1

δ2
0

−2 δ3
δ2

0 0 0 − δ3
δ2

0 0 0
0 −2 δ3

δ2
0 0 0 − δ3

δ2
0 0

0 0 1
δ1

− δ3
δ1δ2

0 0 1
δ1

0
0 0 0 − 1

δ2
0 0 0 − 1

δ2







y1

ẏ1

ÿ1

y
(3)
1

y2

ẏ2

ÿ2

y
(3)
2




(10)

In the following, one treats the tracking problem based on the Brunovsky’s form.
Having like inputs y

(3)
1 and y

(3)
2 , system (10) is rearranged and transformed to

d

dt




y1

ẏ1

ÿ1

y2

ẏ2

ÿ2




=




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0







y1

ẏ1

ÿ1

y2

ẏ2

ÿ2




+




0 0
0 0
1 0
0 0
0 0
0 1




(
y
(3)
1

y
(3)
2

)
(11)
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Theorem 2 For a given regular trajectories (xr, θr, zr), consequently for (y1r, y2r)
and let ey1 = y1 − y1r, ey2 = y2 − y2r, the following choice for

y
(3)
1 = y

(3)
1r − k1ëy1 − k2ėy1 − k3ey1

y
(3)
2 = y

(3)
2r − k1ëy2 − k2ėy2 − k3ey2(12)

consequently the following controllers τ1 and τ3

τ1 =
1

GO1z
(Jy(− 1

δ2
(y(3)

1r − k1ëy1 − k2ėy1 − k3ey1

+ y
(3)
2r − k1ëy2 − k2ėy2 − k3ey2))−Mq θ̇ − Fbzbθ)

τ3 =
1
β

(
1
δ1

(ÿ1 + ÿ2 − δ3

δ2
(y(3)

1r − k1ëy1 − k2ėy1 − k3ey1))(13)

− αXuẋ1 −D1θ −D2θ̇ − βZwż + FB − FG)

ensure the asymptotic tracking convergence of (x, θ, z) to (xr, θr, zr) as time goto
infinity. All the gain parameters are Hurwitz.

Proof. One substitutes (12) into (11), we get

d

dt




ey1

ėy1

ëy1

ey2

ėy2

ëy2




=




0 1 0 0 0 0
0 0 1 0 0 0
−k3 −k2 −k1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −k3 −k2 −k1







ey1

ėy1

ëy1

ey2

ėy2

ëy2




(14)

having like a polynomial characteristic (λ3+λ2k1+λk2+k3)(λ3+λ2k1+λk2+k3).
This permits to apply the Hurwitz’s criterion and deduce the (ki, k̄i)i=1,2,3 gains.
Then (ey1 , ey2 , ey3) tends asymptotically to zero as time goto infinity. In order to
verify the controller expressions given by (13), recall that

τx1 =
1
δ1

(ÿ1 + ÿ2 − δ3

δ2
y
(3)
1 )

τθ =− 1
δ2

(y(3)
1 + y

(3)
2 )(15)

let us substitute y
(3)
1 and y

(3)
2 given by (12) into (13), the backward computations

permit easily to verify the adequate inputs given by (13). This ends the proof.

Simulation tests. With respect to P(XGZ), the reference trajectories are

xr = (C1/k0)e(k0∗t) + L1

zr(t) = (
C1

Xẇk2
0

)(mxk0 −Xu)ek0t + L2(16)

θr = 0
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with C1 = L1 = L2 = 1, k0 = −0.6. The blimp is initialized with xi = qi = ui =
wi = 0, θi = 0.01 and zi = 1. The controller parameters are k1 = 4.1, k2 = 4.4,
k3 = 0.4, k1 = 3.1, k2 = 2.3 and k3 = 0.2. Xẇ, mx and Xu are from the blimp
characteristics (see [8]).
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Figure 3 Blimp behaviour in P(XGZ).

4 Trajectory tracking in the lateral plane P(Y GZ)

Consider a motion with a low speed in this plane and φ ∈ ϑ(0), consequently
the model that describes the blimp’s dynamic is given by

φ̇ = p; ẏ = v; ż = w

v̇ =
1

my
(yvv − (FB − FG)φ + τ2)

ẇ =
1

mz
(Zww − (FB − FG) + τ3)(17)

ṗ =
1
Jx

(Lpp + FBzbφ)

Let us consider τ
′
2 = 1

my
(yvv − (FB − FG)φ + τ2) and τ

′
3 = 1

mz
(Zww − (FB −

FG) + τ3).
The system (17) is controllable in the Kalman sense and has y1 = y and y2 = z

as flat-outputs. Hence, the system takes the form

y1 = y; ẏ1 = ẏ; ÿ1 = τ
′
2

y2 = z; ẏ2 = ż; ÿ2 = τ
′
3(18)

and the tracking controller inputs for (17), given by

τ2 = my(ÿ1r − k1(ẏ1 − ẏ1r)− k2(y1 − y1r))− yvv + (FB − FG)φ

τ3 = mz(ÿ2r − k
′
1(ẏ2 − ẏ2r)− k

′
2(y2 − y2r))− Zww + (FB − FG)(19)
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ensure the convergence of (φ, y, z) to (φr, yr, zr) for the adequate choice of the
controller’s parameters.

Proof. With respect to time, the derivative of (y, z, φ) gives

φ̈ =
1
Jx

[Lpφ̇ + FBzbφ]

ÿ = τ
′
2(20)

z̈ = τ
′
3

Then, the proof is straightforward.

Simulation tests. Figures 4-5 show the behaviour of the blimp into P(Y GZ)

with the real and the reference trajectories. The blimp is initialized at xi = zi = 5m,
yi = 0m, φi = 0.1 and vi = wi = pi = 0. The gain parameters are k1 = k

′
1 = 10 et

k2 = k
′
2 = 25. The series of the blimp parameters used in simulation are detailed

in [8]. In order to test the robustness of the proposed control laws, air drag forces
are added to the model. In terms of amplitudes, in the local frame, these forces
are taken equal to (5v, 5w). The results are sketched in figure 5. The system is
affected in the transient mode, but the tracking objective is achieved. This does
not confirm the robustness of the control law and show the limit of stabilities in
presence of perturbations. This was justified with the air drag forces superior to
(5v, 5w).
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Figure 4 Blimp behaviour in P(XGZ) (non perturbed model).

5 Trajectory tracking in the horizontal plane P(XGY )

In this navigation plane, the blimp is modeled by the following dynamic equa-
tions
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Figure 5 Blimp behaviour in P(XGZ) (perturbed model).

ẋ = cψu− sψv

ẏ = sψu + cψv

ψ̇ = r

mxu̇ = Xuu + myvr + τ1(21)
my v̇ = yvv −mxur + τ2

Jz ṙ = (mx −my)vu + Nrr −Go3xτ2

For a trajectory different from the trimmed flight, compared to the other two
navigation planes, the blimp’s dynamic tracking control in the horizontal plane is
not straightforward. However, we can simplify it at the equilibrium, because some
variables should not effect the equilibrium behaviour. To navigate in this plane,
we can adopt a circle or a straight line like a trimmed flight. A helix trimmed
flight was obtained and adopted for the ascent and descent manoeuvers (see Beji
and Abichou [8]). Here, we solve the tracking problem related to a circle in the
horizontal plane. Firstly, let us define the equilibrium or trimmed flight which can
be formulated as following (r denotes the reference)

u̇r = v̇r = ṙr = 0(22)

This leads to this solution

xr =
ax

ψ̇r
0

sψ̇r
0t +

bx

ψ̇r
0

cψ̇r
0t

yr =− ay

ψ̇r
0

cψ̇r
0t +

by

ψ̇r
0

sψ̇r
0t(23)
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with ax = ur
0, bx = vr

0, ay = ax and by = bx. The trajectory is a circle centered

at (0, 0) with radius rr =
√

u2
0+v2

0

ψ̇r
0

.
To tackle the tracking problem, we introduce a new system of coordinates which is
regular. Let

z1 = xcψ + ysψ

z2 =−xsψ + ycψ

z3 = ψ(24)

The model of blimp, as function of these coordinates, takes this form

ż1 = u + rz2

ż2 = v − rz1

ż3 = r

u̇ =
1

mx
(Xuu + myvr + τ1)(25)

v̇ =
1

my
(yvv −mxur + τ2)

ṙ =
1
Jz

((mx −my)vu + Nrr −Go3xτ2)

Deducing the reference model from (26)

żr
1 = ur + rrzr

2

żr
2 = vr − rrzr

1

żr
3 = rr(26)

u̇r = v̇r = ṙr = 0

Our interest is to construct the tracking controllers τ1 and τ2 such that the
following system of errors converge asymptotically in neighborhood of 0IR6 : eu =
u− ur, ev = v − vr, er = r − rr, ez1 = z1 − zr

1 , ez2 = z2 − zr
2 and ez3 = z3 − zr

3 .

Proposition 1 let us consider that the reference’s movement is realizable with at
low speed of flight and vr = − Nr

Go3xyv
rr. After a preliminary feedback, the tracking

problem analysis in PXGY plane is reduced to

ėu = τ
′
1

ėv = τ
′
2

ėr1 = D1(t)eu + D2(t)ev + D3(t)er1(27)
ėz1 = eu + zr

2er1 + D4(t)ev + rrez2

ėz2 = D5(t)ev − zr
1er1 − rrez1

ėz3 = er1 + D6(t)ev

where
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τ
′
1 =

1
mx

(Xuu + myvr + τ1)

τ
′
2 =

1
my

(yvev −mx(rreu + urer) + yvvr + τ2)(28)

The Di(t)i=1,6 terms will be given thereafter.

Proof. The time derivative of each error is denoted by ėu = u̇ − u̇r, etc.
Therefore,

ėu =
1

mx
(Xuu + myvr + τ1)

ėv =
1

my
(yvv −mxur + τ2)

ėr =
1
Jz

((mx −my)vu + Nrr −Go3xτ2)(29)

ėz1 = eu + z2er + rrez2

ėz2 = ev − z1er − rrez1

ėz3 = er

One substitutes the transformation of type v = ev + vr and the product ur =
(ur + eu)(rr + er) into (30), we get

ėu =
1

mx
(Xuu + myvr + τ1)

ėv =
1

my
(yv(ev + vr)−mx(ereu + urer + rreu + urrr) + τ2)

ėr =
1
Jz

((mx −my)(eveu + urev + vreu + urvr) + Nr(er + rr)−Go3xτ2)(30)

ėz1 = eu + ez2er + rrez2 + zr
2er

ėz2 = ev − ez1er − rrez1 − zr
1er

ėz3 = er

Recall that, due to Hartman-Grobman theorem, the dynamic of a nonlinear sys-
tem, topologically, is equivalent to its linearized tangent in the neighborhood of a
hyperbolic equilibrium point. Further, the tracking is transformed to a stabiliza-
tion problem. Consequently, the eliminating of the quadratic terms in the reference
model and the introduction of τ2 = τ̄2 − yvvr with vr = − Nr

Go3xyv
rr, leads to the
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following system

ėu =
1

mx
(Xuu + myvr + τ1)

ėv =
1

my
(yvev −mx(rreu + urer) + τ̄2)

ėr =
1
Jz

((mx −my)(vreu + urev) + Nrer −Go3xτ̄2)(31)

ėz1 = eu + zr
2er + rrez2

ėz2 = ev − zr
1er − rrez1

ėz3 = er

By introducing this transformation er1 = myGo3x

Jz
ev + er and keeping the dynamic

of v, the results in proposition 1 can be verified. The Di(t)i=1,6 terms are given by

D1 =
1
Jz

((mx −my)vr −mxGO3xrr)

D2 =
1
Jz

((mx −my)ur + yvGO3x − (Nr −mxGO3xur)
myGO3x

Jz
)(32)

D3 =
1
Jz

(Nr −mxGO3xur); D4 = −zr
2

myGO3x

Jz

D5 = (1 + zr
1

myGO3x

Jz
); D6 = −myGO3x

Jz

This ends the proof.
The next steps consist to apply the backstepping techniques to system (28).

The following reduced system is obtained one takes eu ≡ τ
′′
1 and ev ≡ τ

′′
2 as virtual

inputs in (28). Then

ėr1 = D1τ
′′
1 + D2τ

′′
2 + D3er1

ėz1 = τ
′′
1 + zr

2er1 + D4τ
′′
2 + rrez2(33)

ėz2 = D5τ
′′
2 − zr

1er1 − rrez1

ėz3 = er1 + D6τ
′′
2

First, one proposes this writing



er2

ez11

ez21

ez3


 =




1 0 0−D2
D6

0 1 0−D4
D6

0 0 1−D5
D6

0 0 0 1







er1

ez1

ez2

ez3


(34)

This permits to transform system (34) as

ėr2 = D1τ
′′
1 + L1er2 + L2ez3

ėz11 = τ
′′
1 + rrez21 + L3er2 + L4ez3(35)

ėz21 = L5er2 − rrez11 + L6ez3

ėz3 = er2 + L7ez3 + D6τ
′′
2
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with

L1 = (D3 − D2

D6
); L2 = (D3 − D2

D6
)
D2

D6

L3 = (zr
2 −

D4

D6
); L4 = ((zr

2 −
D4

D6
)
D2

D6
+ rr D5

D6
)

L5 =−(
D5

D6
+ zr

1); L6 = −(rr D4

D6
+ (

D5

D6
+ zr

1)
D2

D6
); L7 =

D2

D6

Moreover, through the following transformation



er3

ez11

ez21

ez3


 =




1−D1 0 0
0 1 0 0
0 0 1 0
0 0 0 1







er2

ez11

ez21

ez3


(36)

and while taking

τ3 = τ
′′
1 + rrez21 + L3er2 + L4ez3

τ4 = er2 + L7ez3 + D6τ
′′
2(37)

one forces (36) to take this cascade form

ėr3 =−D1r
rez21 + S1er3 + S2ez11 + S3ez3

ėz11 = τ3(38)
ėz21 = L5er3 + S4ez11 + L6ez3

ėz3 = τ4

where in order to simplify the writing of this system, one considers

S1 = (L1 −D1L3); S2 = (L1 −D1L3)D1(39)
S3 = (L2 −D1L4); S4 = (L5D1 − rr)

Now, the new virtual controllers in (39) are ez11 ≡ τ
′
3 and ez3 ≡ τ

′
4. This leads

to

ėr3 =−D1r
rez21 + S1er3 + S2τ

′
3 + S3τ

′
4

ėz21 = L5er3 + S4τ
′
3 + L6τ

′
4(40)

The system (40) can be decoupled under S2L6 − S4S3 6= 0 and L6 6= 0 with

τ
′
3 =

L6

S2L6 − S4S3
(−k5er4 + D1r

rez21 − (S1 − S3L5

L6
)(er4 +

S3

L6
ez21))

τ
′
4 =

1
L6

(−k6ez21 − L5(er4 −
S3

L6
ez21)− S4τ

′
3)(41)

k5 and k6 are positive parameters. In closed loop,
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ėr4 =−k5er4

ėz21 =−k6ez21(42)

Our stability result in the P(XGY ) plane is regrouped in this main theorem.

Theorem 3 Under (28), (41) and the following control feedback

τ
′
1 =−k1(eu − τ

′′
1 )

τ
′
2 =−k2(ev − τ

′′
2 )(43)

τ3 =−k3(ez11 − τ
′
3)

τ4 =−k4(ez3 − τ
′
4)

with (k1, k2, k3, k4) are strictly positive and large enough, the system of errors in
(30) is locally exponentially stable. Further, we can deduce τ1 and τ2 in accordance
with the above iterative results.

Simulation tests. In the following figures, we show the behaviour of the blimp
for a circle like a trimmed flight in P(XGY ). The tracking controller parameters are
k1 = k2 = k3 = 20, k4 = 3 and k5 = k6 = 0.1. The altitude in z is equal to 3meters.
The proposed control inputs ensure the stability of the engine when the equilibrium
is reached. The blimp’s parameters used in simulation are (International System
Units)

mx = 10.2; my = 16.32; mz = 16.32
Xu = −10; yv = −10 ; Zw = −10;
Nr = −10; Mq = −10; Jy = 27.73
GO3x = 3; GO1z = 1; Jz = 27.63
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Figure 6 Tracking of a circle in the P(XGY ) plane (without perturbation).

Figure 7 shows a perturbed circle tracking result under the air drag forces equal
to (0.05u, 0.05v). The proposed control law is robust for a low amplitude values of
drag forces. A (0.5u, 0.5v) introduces an important static tracking error and the
robustness is blamed. More investigation in the conception of the control law is
necessary with respect to variations of the blimp parameters.
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Figure 7 Tracking of a circle in the P(XGY ) plane (with perturbation).

6 CONCLUSIONS

A various controllers were proposed to ensure the stability tracking of a blimp
in a different geometric planes. The kino-dynamic of the blimp was distributed in
each navigation plane and the controllability criterions were examined. Compared
to some earlier works on blimps like the stabilization problem and the trimmed
flight maneuvers, in this paper, we consider the effect of the generally neglected
terms related to the added mass matrix. These terms introduce coupling in ac-
celerations and affect here only the longitudinal dynamics. Hence, flatness-based
control seems to be adequate to guide the blimp in this plane. Note that the pro-
posed continuous tracking controller overcome the under-actuation which is present
even if the dynamic was distributed. The problem that should be treated in the
future is : how consider the maximum coupling in the model writing for an even-
tually flight manoeuver? For real tests, the blimp’s dynamic model integrating
parameter variation and navigation limits due to drag forces, are also in our future
investigation.
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