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In this study the tracking controller solution for the cartesian position and orientation
(yaw) of the IBISC Bidirectional-Unmanned Arial Vehicle (B-UAV) is addressed in the
cartesian coordinates. With respect to velocities based control, the cartesian acceleration-
based model involves some difficulties in the conception of the tracking controller. Con-
trolling the vehicle velocities (typical example from mobile robots) leads to a stabiliz-
ing/tracking of vehicle’s positions. However, the problem is not straightforward when one
considers acceleration-based motion. The aim of this work was to steer the B-UAV using
the yaw attitude and two inclined rotor forces. The tracking control problem considers
the dynamic model in accelerations and integrates some kinematic transformations. In
neighborhood of the reference path, the transformed model in errors is linearized. Hence,
the tracking results are local of nature but lead to a satisfactory simulation tracking tests.
The planned yaw and longitudinal/lateral inputs are also considered in the tracking control
design.

Nomenclature

b

Cartesian position vector
Euler angles vector

Re Local frame attached to G
Ro Inertial frame

Mass, kg

Collective forces vector
Torques vector

\]123

I. Introduction

NMANNED Air Vehicles (UAV) are envisioned in many applications, including terrain exploration, mili-
Utary/ civil surveillance and scientific research, see for example3:10 and the references therein. The UAV
may differ considerably regarding size and power consumption, as well as motion and sensing capabilities.
In order to enable complex autonomous behaviors, it is important as a basic functionality to be able to
move the UAV in a partially unknown environment and in an autonomous manner. One notes that UAV
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includes Autonomous Unmanned Helicopter (AUH)? which is a versatile machine that can perform aggres-
sive maneuvers. Compared to helicopters,®® the UAV X4-flyer (with four rotors) has some advantages:%:1°
given that two motors rotate counter clockwise while the other two rotate clockwise, gyroscopic effects and
aerodynamic torques tend, in trimmed flight (constant rotor velocities), to be canceled.

A model for the dynamic and configuration stabilization of quasi-stationary fight conditions of a four rotor
vertical take-off and landing (VTOL) was studied in'® where the dynamic motor effects are incorporating
and a bound of perturbing errors was obtained for the coupled system. The stabilization problem of a four
rotor rotorcraft is also presented in'! where the nested saturation algorithm is considered. With the intent
to stabilize aircrafts that are able to take-off vertically as helicopters, the control problem was solved for the
planar vertical take-off and landing (PVTOL) with the input/output linearization procedure'? and theory
of flat systems.!3 15

An B-UAV operates as follows: vertical motion is controlled by collectively increasing or decreasing the
power of all motors. longitudinal motion, in z-direction or in y-direction, is not achieved by differentially
controlling the motors generating a pitch/roll motion of the airframe that inclines the collective thrust
(producing horizontal forces, case of the X4-flyer). In the B-UAV case, two engines of direction are used
to permute between the z/y displacement. The tracking problem using a smooth variable structure control
was presented in.®

II. System Modeling

One presents the dynamic model for the engine able to realize a fast flight of advance, hovering and quasi-
stationary motion. Such a model can be achieved in a local reference frame related to the vehicle, known as
local model, or in a supposed fixed frame, known as global model. Many authors consider the dynamics from
a rigid body associated the fuselage to approach the modeling to which is added the aerodynamic forces,
generated by the rotors. We quote for the work of Chriette with Hamel on the helicopters,! Castello with
Lozano on X4 and Beji with Abichou® on the bidirectional X4 flyer. The model that one studies is different
in structure due to the orientation of their axes compared to the conventional model.> Let G denotes the
center of mass attached to the vehicle, let Rg = {G, EY, EJ, E{} (see figure1)) be the local frame attached in
G. The global fixed frame, known as the inertial frame, is denoted by Ro = {O, E,, Ey, E.}. Consider the
vector X = (x,y, z) of vehicle’s G position and one uses the Euler angles nn = (6, ¢, ) to define the attitude,
such that (R : Rg — Ro) and R € SO(3).

The objectif is to propel the aerial vehicle through the two servo-rotors and not through the orientation
of the engine and to carry out the turn movement (movement coupled the horizontal motion to the yaw
attitude). This idea proves its interest in the control of displacements by the yaw angle. This concept adds
two servo-motors, consequently a disadvantage with respect to the embarked mass. The two internal degree
of freedom are denoted by (£1,£3) € (—20°,20°). Hence, the two supports of the engines can, either to swivel
in the same direction to create a horizontal component likely to propel the X4 flyer in translation, or to
swivel in opposite direction to create a yaw without translation. One deduces the following model:?

mi =S¢CQUQ — Spus
mi = (565ySy + CypCy) us + CoSyus
mZ = (SpSyCy — CypCy) uz + CoCyus — myg

(1)

0 =To; ¢="Tp; ="y
With respect to the conventional X4 flyer, we get the following inputs: ug = f15¢, + f3S¢, and the
collective force is us = fi1C¢, + f3C¢, + fo + fa. In the following, we deal with this inputs like the control

feedback for the system and we reduce our analysis to the not trivial problem of the planar motion in
acceleration. Let:

& =usin(v))
§j =ucos(¢) (2)
b =1y

in system (1) our attention is to consider that u and v are the inputs. Hence, the last second order dynamic



Figure 1. The B-UAYV test bed and its parametrization.

of ¢ will be omitted. 7, will be designed such that Vehicle yaw converges to the input.
In the kinematics change of variables carries out according to:

z1 =& sin(y) + gy cos(v))
29 = — & cos(v)) + ysin()
by derivation and using (1) one obtains:
4 =u— 1z
iy =thz
Let us introduce the reference model according to
2" =u" sin(y")
" =u" cos(y")

we have from (2)

2 =& sin(y”) + § cos(4))
2 = — & cos(4") + § sin(y)")

we can simplify system (5) by holding account of " = ¢" tan(x)") which can be reduce to

z5 =0
one can notice that from " = ¢” tan(¢)") we can write ¢)" = 0 then from (4) and (5) we have

z] =u"

o
Zy =0



we incorporate the errors in z; and 2z, with e,, = 21 — 2] and e,, = 29 — 25. The time derivative of these
eITOorS are as
. . o
€2y =€y — €5,€y — 25y 9)
. . e
€2y =€z Eyp T 216y

where e, =u —u" and ey, = —Y".
The tracking control problem is reduced to the following system

€r — eyéy =Y ey +sin(¢)e,, — cos(y")e,,
€z, =€y — Z2€y

ey€y + €y = — & ey + cos(yP")e,, +sin(y")e.,
ézg :Zléw

L ¢, — eypty and éy = ey€r + €y, meaning that this global regular

&\ _ [ 1 —ey éx (11)
€y ey 1 €y
Then the system Eq. (10) becomes
éx =y ey +sin(y)e,, — cos(v")es,
€s =€y — €5,€y — 256y
&y = — ey + cos(P")e,, +sin(Y)es,
€z, =€z, ) + Z;éd}
as one reasons on the system of errors, we assume that ¢" is in the neighborhood of zero, then cos(¢") ~ 1

and sin(¢") ~ ¢". Further the quadratic terms can be ignored. The system of errors becomes

(10)

Without loss of generality, let é,
transformation

(12)

éx :y-rew + 1/)T621 — €z

€z =€y — Z5€y (13)
éy = — a’:rew + €21 + 1/)T€Z2
€z, :Z{éw
which can be divided in two sub-systems. Then, we obtain
éx =Y"e,, + 9y ey — €z,
€ry =€y — 25€y
(14)

éy =y"e,, — & ey + e
€z, =21 €y
The writing Eq. (14) is considered as a perturbed system. The perturbation term results from e,, and

€.,. We think of Eq. (14) as a perturbation of the nominal system
é:r :¢Tezl —+ yred,

e
€z, =€y — Z€y
oo (15)
€y =0"e,, — ey
) .
€z =216y

One divides Eq. (15) in two disconnected nominal sub-systems. The first one is given by

éy :wT(EZZ — jfr€¢ (16)

Y
€2y =R1€y



and the second is as

Ve e (17)
€z, =€y — Z3€y
The stability study of Eq. (16) is as follows: from sliding mode control theory, we constrain the error in
yaw to the manifold s = é; + Aey (A > 0). The variable s should tends to zero as time tends to infinity
guarantees that (ey,é,) tends to zero at infinity and the rate of convergence is fixed by A. In order to
determine s, let us introduce this variable like a new controller into Eq. (16) where we suppose e, = 0 that
should be verified later.

é, ="
Y e (18)
€., =218
We have the following lemma.
Lemma 1 The variable input s = —¢"2](é, + Y"e,,) ensures the exponential stability of the nominal sub-

system Eq. (18).

Proof. Introduce s given by Lemmal into Eq. (I8) leads to &, + (¢")2(2})%é, + (¥")%(2})%¢, = O.
The last equality means that (&,, éy) tends to zero as time tends to infinity. As a result e,, tends to zero,
consequently s — 0, meaning that (ey,é,;) — 0. Then the nominal sub-system Eq. (16) is exponentially
stable. This ends the proof.

One returns to the nominal sub-system Eq. (17), from results of Lemmal, we can write the following

én =t
} x 1/) zZ1 (19)
€ =€y

Lemma 2 For e, = —" (&, + é,), the nominal sub-system Eq. (19) is exponentially stable.

Proof. Introduce e, = —9" (¢, + é,) in Eq. (19), we have &, + (¢¥")%é, + (¢")?é, = 0 since the roots of
the polynomial characteristic have strictly negative a reality part then é, and €, converge to zero.

Theorem 1 Consider the perturbed system Eq. (14)), Let g(t,x) = (e, 0 e,, 0)T denotes the vector of
perturbation where x = (€, e, é e, )T is the state of Eq. (14)). Then the perturbed system is exponentially
stable at the equilibrium.

Proof. The exponential stabilities of the two nominal sub-systems are given by Lemmal and Lemma2.
Further, we have ¢(¢,0) = 0 and g(¢, ) is smooth. From the fact that ¢(¢, z) tends to zero as time tends to in-
finity, this guarantees the existence of a small enough ~ such that ||g(¢, z)|| < 7||z|| (vanishing perturbation).
One ends the proof from stability results of perturbed systems detailed in (see!).

Under the conditions of lemma 1 and lemma 2 we have u = u” + e,, by consequent u converge to u” and
1 =Y + ey by consequent 1 converge to "

The backstepping approach and the sliding mode technique are combined to solve the tracking control
problem. Once e, and e, are established such that the system above is asymptotically stable, one deduces
u=u"+e, and ¥ = ¢¥" + ey. The reference inputs u” and ¢" are the solutions of the B-UAV reference
dynamic. A satisfying tracking examples issue from simulations are depicted in figures 2. To success the
tracking behavior constraints in the reference path are added.

III. Conclusions and Futur works

A model based planar behavior of the X4 bidirectionnel flyer vehicle was proposed. We have shown that
the displacement of the vehicle can be asserted from the yaw attitude planning. In comparing these results
with respect to the conventional X4 flyer, the orientation of the whole vehicle is not needed. A yaw-motion
based controller combined with the sliding mode techniques ensure an exponentiel behavior of the tracking
objectives. Our analysis for control feedback is interesting in the sens that leads to accelerations and not
to velocities for control schemes. The simulation results sketch that the control inputs and yaw attitude
references are well followed.
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Figure 2. The reference and real trajectories (left) with the real and planned inputs (right).
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