
Finite-time stabilization of interconnected nonlinear systems

Naim Zoghlami1, Lotfi Beji2, Rhouma Mlayeh3 and Azgal Abichou4

Abstract— This paper deals with the finite-time stability and
stabilization problems of interconnected nonlinear systems. We
consider that there exist a finite-time stable controller for
each isolated system for which is added a control part that
preserves the systems finite-time stability. Sufficient conditions
for finite-time stability are achieved, and permit to extend the
asymptotic stability results presented in the literature. The
procedure can be applied for a large variety of autonomous
nonlinear multi-system with and without drift terms. The finite-
time stabilizing-tracking control of kinematically nonholonomic
model of multiple wheeled mobile robots is presented and
illustrated.

I. INTRODUCTION

Many researchers tired to concentrate their works on
asymptotic or exponential stability of interconnected sys-
tems, which contributes to provide information about the
stability analysis of interconnected systems. For example,
the string stability in [1] was described with linear inter-
connection. Further, necessary and sufficient conditions for
stability of linear interconnected systems based on graph
Laplacian matrix is presented in [2]. More general form of
interconnected nonlinear systems [3] [4] are used instead
of stability concepts because of the complexity of system
models.

The finite-time stability of dynamical systems implies
that trajectories converge to an equilibrium state in finite-
time. With respect to the classical control theory, the finite-
time stability theory is a more practical concept. Haimo [5]
studied autonomous scalar systems and gives necessary and
sufficient conditions for finite-time stability of the system’s
origin. Further, the stability problem in finite-time of nonau-
tonomous systems was treated by several authors such as
Orlov [7] for switched systems and Moulay in [6] proposed
sufficient conditions using Lyapunov function. Haddad [11]
provides Lyapunov and converse Lyapunov conditions for
finite-time stability.The principal result of finite-time stability
for homogeneous nonautonomous systems was obtained by
Bhat in [10]. Sufficient conditions for finite-time stability
of homogeneous and T-periodic systems are presented in
[12],and where the averaging method has lead to a perturbed
average system.
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The analysis of multi-system in group has witnessed a
large and growing literature concerned with the coordination
of multi-mobile autonomous agents including flocking and
formation [13] [14] [16] [15]. In this area, the ith agent
model is considered as a driftless subsystem, and taken
kinematically as a first order (ẋi = ui, ui is the input)
or dynamically as a second order (ẍi = ui) leading to
asymptotic or finite-time stability results.

As a purpose, we will propose to solve the finite-time
stabilization of interconnected system where each individ-
ual kinematic/dynamic isolated system is nonlinear. Each
isolated system is considered as finite-time stable with the
associated Lyapunov function. Consequently, each nonlinear
control law is constructed taking each system properties and
should enables the formation’s stability in finite-time. As
a result, the stabilizing control procedure must be applied
to wide nonlinear form of applications with/without drift
terms. As an application, the finite-stability of nonholonomic
wheeled multi-mobile robots is presented.

The paper is organized as follows: the second section is
devoted to some preliminary mathematical results of finite-
time stability and graph theory. In the third section, We
present a class of interconnected nonlinear systems, and
sufficient conditions for stability. Driftless interconnected
systems and their stabilization in finite-time are presented
in section IV. Section V deals with the tracking control
problem of multiple kinematically non-holonomic wheeled
mobile robots. To illustrate our results, numerical examples
are simulated in section VI.

II. MATHEMATICAL PRELIMINARIES

In this section, we introduce notations, definitions and
present some results needed for the development of our main
approach.

A. Finite-time stability

Consider the system of differential equations

ẋ(t) = f(x(t)) (1)

where f : D → Rn is continuous on an open neighborhood
D ⊆ Rn of the origin and f(0) = 0. We denote by ψx(.) a
solution of (1) satisfying ψx(0) = x.

Definition 2.1: [8]: The origin is said to be a finite-time
stable equilibrium of (1) if there exists an open neighborhood
N ⊆ D of the origin and a function T : N\{0} → (0,∞),
called the settling-time function, such that the following
statements hold:

2013 IEEE Multi-conference on Systems and Control
(Conference on Control Applications)
Hyderabad, India, August 28-30, 2013

978-1-4799-1557-6/13/$31.00 ©2013 IEEE 1188



(i) Finite-time convergence: For every x ∈ N\{0}, ψx
is defined on [0, T (x)), ψx(t) ∈ N\{0} for all t ∈
[0, T (x)), and lim

t→T (x)
ψx(t) = 0.

(ii) Lyapunov stability: For every open neighborhood Uε of
0 there exists an open subset Uδ of N containing 0
such that, for every x ∈ Uδ\{0}, ψx(t) ∈ Uε for all
t ∈ [0, T (x)).

The origin is said to be a globally finite-time stable equilib-
rium if it is a finite-time stable equilibrium with D = N =
Rn.
Note that if the equilibrium of (1) is finite-time stable, then
it is asymptotically stable,therefor finite-time stability is a
stronger notion than asymptotic stability.

Theorem 2.2: [9]: Suppose there exists a continuous func-
tion V : D → R such that the following conditions hold:
(i) V is positive definite.

(ii) V̇ is continuous and negative on D\{0}.
(iii) There exist real numbers k > 0 and α ∈ (0, 1), and a

neighborhood V ⊂ D of the origin such that V̇ +kV α ≤
0 on V ⊂ D.

Then, the origin is finite-time stable equilibrium of (1).
Moreover, if N is as in definition 2.1, then T (x) ≤

1
k(1−α)V (x)1−α for all x ∈ N .

B. Graph theory

In this subsection, we introduce some basic concepts in
algebraic graph theory for multi-agent networks. Let G =
{V, E} be a directed graph, where V = {1, 2, ..., n} is the
set of nodes, node i represents the ith agent, E is the set of
edges, and an edge in G is denoted by an ordered pair (i, j).
(i, j) ∈ E if and only if the ith agent can send information
to the jth agent directly.
A = [aij ] ∈ Rn×n is called the weighted adjacency
matrix of G with nonnegative elements, where aij > 0 if
there is an edge between the ith agent and jth agent and
aij = 0 otherwise. In this paper, we will refer to graphs
whose weights take values in the set{0, 1} as binary and
those graphs whose adjacency matrices are symmetric as
symmetric. Let D = diag{d1, ..., dn} ∈ Rn×n be a diagonal
matrix, where di =

∑n
j=0 aij for i = 1, ..., n. Hence, we

define the Laplacian of the weighted graph

L = D −A ∈ Rn×n

Theorem 2.3: [18] The Laplacian matrix L of a directed
graph G = {V, E} has at least one zero eigenvalue and all
of the nonzero eigenvalues are in the open right-half plane.
In addition, L has exactly one zero eigenvalue if and only if
G has a directed spanning tree. Furthermore, Rank(L)=n if
only if L has a simple zero eigenvalue.

III. INTERCONNECTED SYSTEMS INTEGRATING DRIFT
TERMS: FINITE-TIME STABILIZATION

Based on properties of each system and those of in-
terconnections, sufficient conditions are given for finite-
time stabilization of interconnected nonlinear systems. Let

consider the dynamic of N systems indexed by the set
I = {1, ..., N}, in algebraic form

ẋi = fi(xi) +

m∑
j=1

gi,j(xi)ui,j ∀i ∈ I (2)

where xi ∈ Rn and the continuous maps fi : Rn → Rn and
∀1 ≤ j ≤ m gi,j : Rn → Rm. In matrix form, the ith system
(2) leads to,

ẋi = fi(xi) +B(xi)ui (3)

where B(xi) ∈ Rn×m and ui ∈ Rm.

In the following, we stay the main result of the paper,
which gives sufficient conditions for finite-time stability of
interconnected systems with drift.
The all system is defined by

ẋ = f(x) + (IN ⊗B(x))u (4)

where IN is the identity matrix, x ∈ RNn, u ∈ RNm and
f(x) = (f1(x1), ..., fN (xN ))T

Interconnection in system (4) is the subject to design
the control-input u tacking the Laplacian L related to a
proposed graph G.

Proposition 3.1: Let the interconnection control input
given by

u(x) = −[L⊗ Im][IN ⊗ C]x (5)

where the matrix C is in Rm×n. Under the control input
(5), the origin of the interconnected system (4)is finite-time
stable if the following assumptions hold:
(1) there exist k ≥ 0 such that xT f(x) ≤ −k(xTx)β where

β ∈]0, 1[ ∀x 6= 0.
(2) xT [L⊗B(xi)C]x ≥ 0.

�

Proof. Using the given feedback and the Kronecker product
properties, in closed loop the dynamic of the interconnected
systems is given by

ẋ = f(x) + (IN ⊗B)u

= f(x)− (IN ⊗B)[L⊗ Im](IN ⊗ C)x
= f(x)− [L⊗BC]x (6)

Using the quadratic Lyapunov function V (x) = 1
2x

Tx and
evaluating the time derivative of V along (6), we have

V̇ = xT f(x)− xT [L⊗BC]x
≤ −k(xTx)β − xT [L⊗BC]x

Assumption 2 in proposition 3.1 implies that the second term
in V̇ is negative semi-definite, therefore

V̇ ≤ −k(xTx)β

≤ −2βk[V ]β

Hence, the origin of the interconnected system (4) is finite-
time stable.
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Remark 3.2: Assumption (1) in proposition 3.1 describes
the property of the subsystem which implies that each
subsystem is finite-time stable with the appropriate quadratic
Lyapunov function.

Remark 3.3: Assumptions (2) is equivalent to say that the
matrix L⊗BC is positive semi-definite. Therefore, using the
Kronecker product properties, BC and L are semi-definite
positive matrix (or semi-definite negative matrix). Then, the
feedback (5) depends on the choice of G and C.

IV. FINITE-TIME STABILIZATION OF INTERCONNECTED
DRIFTLESS SYSTEMS

In this paragraph, we present an extension of the previous
results for the finite-time stabilization of interconnected
driftless systems. Hence, the control feedback is decomposed
into two spots u = ufts + uinter, where ufts performs
the finite-time stability of each isolated system and uinter

ensures the interconnection objectives. Under the control-
input u, in closed loop, the stabilization problems is reduced
to a system with drift. To do, let consider the dynamic of N
systems indexed by the set I = {1, ..., N}, in matrix form
∀i ∈ I

ẋi = B(xi)ui (7)

where B(xi) ∈ Rn×m and ui ∈ Rm.
and the driftless interconnected systems in the state vector
x = (x1, ..., xN )T is written as,

ẋ = (IN ⊗B(xi))u (8)

with u ∈ RNm.
Proposition 4.1: Let subdivide the control u into two parts

u = ufts + uinter (9)

such that

xT (IN ⊗B(xi))u
fts(x) ≤ −k(xTx)β , (10)

and uinter(x) = −[L⊗ Im][IN ⊗ C]x (11)

whith k ≥ 0, β ∈]0, 1[ and the matrix C ∈ Rm×n.
Assume that assumption (2) in Proposition 3.1 holds. Under
(10) and (11), the interconnected system (8) origin is finite-
time stable.

�

Proof. The dynamic of the interconnected driftless systems
is given by

ẋ = (IN ⊗B)ufts(x) + (IN ⊗B)uinter(x)

= f(x)− (IN ⊗B)[L⊗ Im](IN ⊗ C)x
= f(x)− [L⊗BC]x (12)

where f(x) = (IN ⊗B)ufts(x).
Taking V = 1

2x
Tx the proof steps are similar to Proposition

3.1.

�

V. FINITE-TIME TRACKING CONTROL OF
NONHOLONOMIC WHEELED MOBILE ROBOTS

The tracking control problem of non-holonomic wheeled
mobile robots has received great attention. Different methods
are proposed to solve the tracking control problem, such as
the work of Samson [20] that proposes a global tracking
control results. Also, in [21] the tracking control is developed
leading to exponentially stability results of errors. Further,
based on perturbed systems theory, Li in [17] proposed
a finite-time stability result for a single wheeled mobile
robot. Given the quadratic form of a Lyapunov function,
our aim is to find adequate control inputs that success a
N wheeled mobile robots formation. Hence, our approach
is different from Li [17], but is restricted to the quadratic
form of Lyapunov’s stability. The asymptotic result proposed
by Morin [22] initiates our finite-time approach for the
tracking control. In the subsequent section, we develop our
preliminary result for a single unicycle that will be conducted
to the multiple unicycle system.

A. Finite-time tracking of one unicycle

The tracking trajectory problem is presented as follows:
given an eligible trajectory qr(t) for t ≥ 0 and define
the error qe = q − qr, the goal is to find a state
feedback control u(q, qr, t) such that the origin of
q̇e = f(q, u(q, qr, t))− f(qr, ur) is finite-time stable.

Recall that the kinematically nonholonomic model of the
unicycle is given by :

ẋ = u1 cos(θ)

ẏ = u1 sin(θ) (13)

θ̇ = u2

where (x, y) denotes the center of mass coordinates, θ
is the angle between the heading direction and the x axis,
and inputs u1 and u2 are the linear and angular velocities,
respectively. For the stabilizing problem meaningful, we
must first characterize the achievable trajectories, one way
to do this is to consider the model. The (xr(t), yr(t)) should
verifies

ẋr = u1,r cos(θr)

ẏr = u1,r sin(θr) (14)

θ̇r = u2,r

Let us define the trajectory tracking errors e = (x− xr, y−
yr, θ − θr). The time derivative of e is given by:

ė1,r = u2,re2,r + u1 cos(e3,r)− u1,r
ė2,r = −u2,re1,r + u1 sin(e3,r) (15)
ė3,r = u2 − u2,r
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where e3,r ∈] − π/2, π/2[. A change of coordinates and
control variables lead to

z1 = e1,r

z2 = e2,r

z3 = tan e3,r (16)
w1 = u1 cos(e3,r)− u1,r

w2 =
u2 − u2,r
cos2(e3,r)

Taking w1 and w2 as new inputs, from (15), we obtain :

ż1 = u2,rz2 + w1

ż2 = u2,rz1 + u1,rz3 + w1z3 (17)
ż3 = w2

Proposition 5.1: Under the following tracking control
laws

w1 = −|u1,r|(sign(z1)|z1|α + z2z3) (18)
w2 = −|u1,r|[z2 − sign(z1)|z1|α + (z1z2 + sign(z1)|z1|αz2

+ z22z3 −
1

arctan(ε)
sign(z3)|z2|α+1)] (19)

the origin of (17) is finite-time stable, consequently, the
system (13) tracks the reference (14) in finite-time whith
ε > 0, e3,r > ε and α ∈]0, 1[.
Proof. Let us take the quadratic Lyapunov function

V (z1, z2, z3) =
1

2
(z21 + z22 + z23)

The time derivative of V through system (17) leads to

V̇ = z1ż1 + z2ż2 + z3ż3

= z1w1 + z2z3w1 + z3w2

= −|u1,r|(|z1|α+1 + |z2|α+1 + |z2|α+1)

= −|u1,r|
3∑
i=1

|zi|α+1 (20)

View the convexity of the function zi 7→ zα+1
i , we have

(

3∑
i=1

zi
3
)α+1 ≤ 1

3

3∑
i=1

zα+1
i

Also this inequality holds

(

3∑
i=1

zi)
α+1 ≥ (

3∑
i=1

z2i )
α+1
2

The above inequalities with (20) permit to write

V̇ ≤ −|u1,r|
3α

2
α+1
2 V

α+1
2

As the tracking problem is reduced to a stabilizing one, then
from the inequality above we can conclude that systems (17)
origin is finite-time stable. This ends the proof.

B. Finite-time tracking of multi-unicycle
We now present a direct application of Proposition 4.1.

Consider a set of N unicycles where for i ∈ {1, ..., N} the
ith unicycle model is given by (14):

q̇i = B(qi)ui (21)

with ∀i ∈ {1, ..., N}, qi = (xi, yi, θi)
T , ui = (u1,i, u2,i)

T

and

B(qi) =

 cos(θi) 0
sin(θi) 0

0 1

 .

Each unicycle’s reference model is shown by (14), hence the
ith system of errors is deduced from (17),

ż1,i = u2,rz2,i + w1,i

ż2,i = u2,rz1,i + u1,rz3,i + w1,iz3,i (22)
ż3,i = w2,i

Let consider a Laplacian matrix L that describes the graph
connection between all unicycles, and C is in R2×3 such that
proposition 3.1 assumption 2 is verified.

Proposition 5.2: consider the following

wfts1,i = −|u1,r|(sign(z1,i)|z1,i|α + z2,iz3,i) (23)

wfts2,i = −|u1,r|[z2,i − sign(z1,i)|z1,i|α

+ (z1,iz2,i + sign(z1,i)|z1,i|αz2,i

+ z22,iz3,i −
1

arctan(ε)
sign(z3,i)|z2,i|α+1)] (24)

such that wftsi = (wfts1,i , w
fts
2,i )

T and for zi =

(z1,i, z2,i, z3,i)
T let winteri = −

N∑
j=1

aijC(zi − zj)

under the control vector wi = wftsi + winteri , the system
(22) origin is finite-time stable. aij is the adjacency matrix
element.

�

Proof. With respect to the first part of wftsi , system (22) is
written in the form given by (3):

zi = fi(zi) +B(zi)w
inter
i

with zi = (z1,i, z2,i, z3,i)
T , B(zi) =

 1 0
z3,i 0
0 1

 and

fi(zi) = (u2,rz2,i, u2,rz1,i + u1,rz3,i, 0)
T + B(zi)w

fts
i .

Based on Proposition 5.1 proof, assumption (1) in Propo-
sition 3.1 is verified with k =

|u1,r|
3α 2

α+1
2 and β = α+1

2 .

C. Simulation results
A set of N = 4 unicycles is considered. Following to

the graph G in Fig.1, for one unicycle the matrix C and the
Laplacian matrix L are given by :

C =

(
1 1 0
0 0 1

)
; L =


1 0 −1 0
−1 1 0 0
−1 −1 3 −1
−1 0 0 1
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Fig. 1. G for a system with 4 unicycles.

The control parameter is taken α = 0.5. Each unicycle
initial positions is given by (meters):

(x1, x2, x3, x4)(t = 0) = (−3,−2,−1,−4)

(y1, y2, y3, y4)(t = 0) = (0, 0, 0, 0)

and the initial heading angles are such that (in radian)

(θ1, θ2, θ3, θ4)(t = 0) = (
3π

4
,
3π

4
,
3π

4
,
3π

4
)

The initial position of the reference is (xr, yr, θr)(t = 0) =
(0, 0, 0). The reference velocities are as

u1,r = 1m.s−1, u2,r = cos(t)− 1

4
rad.s−1.

Figures Fig.2-4 sketch errors in term of zi variables. These
also images of the multi-unicycle position errors, hence this
confirm the stability results. Consequently, the controller
w1,i (Fig.7) and w2,i (Fig.8) realize the objectives and
tend to zero in finite-time. Further, behaviors in tracking of
the multi-unicycle system is presented by figure Fig.9, and
the corresponding velocity controllers are shown by figures
Fig.5-6. Consequently, the velocity references are reached in
finite time.

Fig. 2. Tracking errors z1,i

VI. CONCLUSION

The finite-time stability problem of interconnected nonlin-
ear systems was solved using Lyapunov quadratic functions
and the Graph theory. We have provided sufficient conditions
for finite-time stability of some nonlinear classes and may
be structurally different systems including interconnections.
Interconnections were suggested to be as an additional term

Fig. 3. Tracking errors z2,i

Fig. 4. Tracking errors z3,i

Fig. 5. control input u1,i

Fig. 6. control input u2,i
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Fig. 7. control input w1,i

Fig. 8. control input w2,i

Fig. 9. The phase plot on plane

in the controller and had showed to preserve the system
finite-time stability and lead to behaviors like-consensus.
Finite-time stability including finite-time consensus of het-
erogeneous systems in formation is a perspective of this
work.
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