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Finite-time consensus for controlled

dynamical systems in network

Naim Zoghlami, Lotfi Beji, Rhouma Mlayeh, and Azgal Abichou

Abstract

The key challenges in controlled dynamical systems in networks are the component heterogeneities,

nonlinearities, and the high dimension of the vector of states describing the networked models. Through

the existing models especially for autonomous systems treated as controlled first-order ordinary differ-

ential equations, nonlinear dynamic models take two main forms that will be addressed in this paper.

For each model evolving in networks forming a homogenous or heterogeneous multi-system, protocols

integrating sufficient conditions are derived leading to finite-time consensus. Likewise, for the networking

topology, we make use of fixed directed and undirected graphs. Finite-time stability theory and Lyapunov

methods are useful to prove our approaches. As illustrative examples, the homogeneous multi-unicycle

kinematics and the homogenous/heterogenous multi-agent dynamics in networks are detailed.

Index Terms

Finite-time consensus, controlled nonlinear dynamics, multi-system in networks.

I. INTRODUCTION

Networked dynamical systems is an emergent scientific field that brings together multi-agent

systems and multi-dynamic analysis. To form a collective task or achieve a global behavior,

our main objective is to take into account controlled dynamics in interactions and behavior

of traditional networks in multi-agent theory. However, the weakness arising from multi-agent

systems is to develop distributed control policies based on local information that enables all
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agents to reach an agreement on certain quantities of interest. This type of collective movement

is called consensus. Thus, the problem of consensus plays a central role in the study of multi-

agent systems. Under the control of a group of mobile agents, it is desirable to obtain a coherent

collective movement: the agents are close to each other, avoid collisions and adopt a common

direction [9].

The consensus problem was initially used in computer science. In recent years this paradigm has

introduced in multi-agent systems witnessed dramatic advances of various distributed strategies

that achieve agreements. In [5] the authors proposed a simple but interesting discrete-time model

of finite agents all moving in the plane. The proposed model used for the computer animation

industry. Each agent’s motion is updated using a local rule based on its own state and the states of

its neighbors. Jadbabaie et al. [6] provided a theoretical explanation of the consensus property

of the Vicsek model by using graph theory and nonnegative matrix theory. For this model

each agent’s set of neighbors changes with time as system evolves. Olfati-Saber and Murray [7]

suggested a typical continuous-time model. In this model the concepts of solvability of consensus

problems and consensus protocols were first introduced. The authors used a directed graph to

model the communication topology among agents and studied three consensus problems, namely,

directed networks with fixed topology, directed networks with switching topology, and undirected

networks with communication time-delays and fixed topology. Ren and Beard [8] extended the

results of Jadbabaie [6] and Olfati-Saber [7] presented mathematically weaker conditions for

state consensus under dynamically changing directed interaction topology.

However, finite-time consensus, is one of interesting research problem in consensus, refers to the

agreement of a group of agents on a common state in finite time. Finite-time consensus firstly was

studied by Cortes [10], where a non-smooth consensus algorithm is proposed. In the same filed

[11], and in [15] authors proposed a continuous nonlinear consensus algorithm to guarantee the

finite-time stability under an undirected fixed interaction graph. Wang and Xiao in [14] suggest

an improvement to the proposed algorithm proposed in [11]. The new algorithm proposed in

[14] is able to guarantee finite-time consensus under an undirected switching interaction and

a directed fixed interaction graph when each strongly connected component of the topology is

detail-balanced.

In [17], the authors study finite-time consensus for second order dynamics with inherent nonlinear

dynamics under an undirected fixed interaction graph. Recently, various finite-time stabilizing
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control laws have been proposed using continuous state feedback and output feedback controllers

Bhat et al. [3]. Furthermore, the finite-time control design has been extended to nth order systems

with both parametric and dynamic uncertainties [2]. Although the finite-time design is generally

more difficult than the asymptotically stabilizing control due to the lack of effective analysis

tools. Also, the non-smooth finite-time control synthesis can improve the system behaviors in

some aspects like high-speed, control accuracy, and disturbance- rejection. Therefore, it is not

surprising that finite-time control ideas have been applied to multi-agent systems with first-order

agent dynamics using gradient flow and Lyapunov function [10]-[12].

What motivated the paper is the finite-time consensus of controlled nonlinear dynamics in

networks where two types of dynamic models are emphasized. These models are with/without

drift terms, commonly used for autonomous systems modeling. The proposed protocols solve the

problem of homogenous/heteregoneous finite-time consensus under fixed and directed/undirected

topology. Results from finite time stability theory, graph theory, and Lyapunov techniques are

recalled and used to prove our approaches.

The paper is organized as follows. First, preliminaries and problem formulation are shown

in Section II. Then we focus on the finite-time consensus of networked driftless systems in

section III. Sufficient condition to finite-time consensus of networked drift systems are given in

section IV. In section V, we present result for finite-time stabilization of networked driftless/drift

nonlinear systems. The paper is ended by concluding remarks.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

Throughout this paper, we use R to denote the set of real number. Rn is the n-dimensional

real vector space and ‖.‖ denotes the Euclidian norm. Rn×n is the set of n × n matrices.

diag{m1,m2, ..., mn} denotes a n × n diagonal matrix. In ∈ Rn×n is the identity matrix.

The symbol ⊗ is the Kronecker product of matrices. We use sgn(.) to denote the signum

function. For a scalar x, note that ϕα(x) = sgn(x)|x|α. We use xi = (xi
1, ..., x

i
n)T ∈ Rn,

x = (x1, ..., xN)T to denote the vector in RnN . Let φα(xi) = (ϕα(xi
1), ..., ϕα(xi

n))T with

φα(x) = (φα(xi), ..., φα(xN))T . For z = (z1, ..., zn) vector in Rn, δ(z) = [|z1|, ..., |zn|]T and

δγ(z) = [|z1|γ, ..., |zn|γ]T for γ > 0. Let 1n = (1, ..., 1)T . The exponent T is the transpose.
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B. Graph theory

In this subsection, we introduce some basic concepts in algebraic graph theory for multi-agent

networks (More notions in graph theory are in [4]). Let G = {V , E} be a directed graph, where

V = {1, 2, ..., n} is the set of nodes, node i represents the ith agent, E is the set of edges, and

an edge in G is denoted by an ordered pair (i, j). (i, j) ∈ E if and only if the ith agent can send

information to the jth agent directly.

A = [aij] ∈ Rn×n is called the weighted adjacency matrix of G with nonnegative elements,

where aij > 0 if there is an edge between the ith agent and jth agent and aij = 0 otherwise.

Moreover, if AT = A, then G is also called an undirected graph. In this paper, we will refer to

graphs whose weights take values in the set{0, 1} as binary and those graphs whose adjacency

matrices are symmetric as symmetric. Let D = diag{d1, ..., dn} ∈ Rn×n be a diagonal matrix,

where di =
n∑

j=1

aij for i = 0, 1, ..., n. Hence, we define the Laplacian of the weighted graph

L = D − A ∈ Rn×n.

The undirected graph is called connected if there is a path between any two vertices of the

graph. Directed graph is strongly connected if between every distinct pair (i, j) in G, there is a

path that begins at i and ends at j.

We say that a directed graph has a spanning tree if a subset of the edges forms a spanning

tree (where a spanning tree of G is a directed tree that is spanning subgraph of G).

Note that time varying network topologies are not considered in this paper.

C. Some useful lemmas

In order to establish our main results, we need to recall the following Lemmas.

Lemma II.1. [3]. Consider the system ẋ = f(x), f(0) = 0, x ∈ Rn, there exist a positive

definite continuous function V (x) : U ⊂ Rn → R, real numbers c > 0 and β ∈]0, 1[, and an

open neighborhood U0 ⊂ U of the origin such that V̇ + c(V (x))β 6 0, x ∈ U0\{0}. Then V (x)

converges to zero in finite time. In addition, the finite settling time T∗ satisfies T∗ 6 V (x(0))1−β

c(1− β)
.

Lemma II.2. [7].

(i) If G has a spanning tree, then eigenvalue 0 is algebraically simple and all other eigenvalues

are with positive real part.
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(ii) If G is strongly connected, then there exists a positive column vector w ∈ Rn such that

wT L = 0

Lemma II.3. [14] Suppose G is strongly connected, and let w > 0 such that wT L = 0. Then

diag(w)L+LT diag(w) is the Laplacien matrix of the undirected weighted graph G(diag(w)L+

LT diag(w)). And therefore it is semi-positive definite, 0 is its algebraically simple eigenvalue

and 1 is the associated eigenvector.

Lemma II.4. [7]. For a connected undirected graph G, the Laplacian matrix L of G has the

following properties, xT Lx = 1
2

n∑
i,j=1

aij(xi− xj)
2, which implies that L is positive semi-definite.

0 is a simple eigenvalue of L and 1 is the associated eigenvector. Assume that the eigenvalues of

L are denoted by 0, λ2, ..., λn satisfying 0 6 λ2 6 ... 6 λn. Then the second smallest eigenvalue

satisfies λ2 > 0. Furthermore, if 1T x = 0, then xT Lx > λ2xT x.

Lemma II.5. [18]. Let x1, x2, ..., xn > 0 and 0 < p 6 1.

Then (
n∑

i=1

xi)
p 6

n∑
i=1

xp
i 6 n1−p(

n∑
i=1

xi)
p.

D. Problem statements

There are two main controlled nonlinear dynamic models issued from autonomous systems

modeling. Hence, the key challenges are the complexity of these models when they are considered

in networks, likewise, the size of each system’s vector of states is large, and increases greatly with

the considered number of agents. Further, most of the autonomous system dynamics are nonlinear

and underactuated but modeled with well known first-order ordinary differential equations or

equivalently. Such an equation is controlled, and may integrate drift terms which make difficult

the stability analysis of networked dynamical systems.

In the following, we propose to solve the finite-time consensus problem of two controlled

dynamical systems in network. The first one is based on model (1) which describes a controlled

dynamical system without drift term, and it will be referred as Σ1. The second model is a

controlled dynamic system which is represented by (2), which is clearly a controlled dynamic

with drift term, and it will be assigned to Σ2.

Consider a multi-agent group as N high-dimensional dynamical systems where each agent’s
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behavior is described by (∀i ∈ I = {1, ..., N})

Σ1 : ẋi = B(xi)ui (1)

Σ2 : ẋi = f i(xi) + B(xi)ui (2)

where xi ∈ Rn, and for 1 6 i 6 N xi = [xi
1, x

i
2, ..., x

i
n]T , B(xi) ∈ Rn×m, the continuous maps

f i : Rn → Rn, ui ∈ Rm is the control-input which depends only on the neighbor states. The

matrix B(xi) = [bkl] for 1 6 k 6 n and 1 6 l 6 m.

In the paper, a networked dynamical system based on (1) is referred to multi-Σ1. However,

if the networked dynamical system is referred to (2), then it is assigned to multi-Σ2. Note that

the multi-Σ1 is assumed to be homogeneous multi-system with respect to B(.) structure, and

the multi-Σ2 must be homogenous if f i(.) structure doesn’t change, but the result of the paper

is extended to the heterogenous case where f i(.) can be different for each agent.

Définition II.6. For multi-Σ1 or multi-Σ2, given a protocol ui, a consensus problem is solved

in finite time, if for any Σ1, Σ2 state initial conditions there exists a finite-time T∗ such that

lim
t→T∗

‖xi(t)− xj(t)‖ = 0 (3)

for any i, j ∈ I.

Throughout the paper, a consensus protocol candidate that expected to solve finite-time con-

sensus for multi-Σ1 and multi-Σ2 is given by (i ∈ I)

ui = −C(xi)φα(
N∑

j=1

aij(x
i − xj)) (4)

where C(xi) ∈ Rm×n, α ∈]0, 1[, and aij are the adjacent elements related to the specified G.

Assumption II.7. Let B̃ = B(xi)C(xi) with B̃ = [b̃mk]m,k for 1 6 m, k 6 n. We assume that

there exists C(xi) such that B̃ is a positive semi-definite matrix.

Assumption II.8. A Σ2 drift term f i in (2) satisfies the following inequality (∀i ∈ I)

‖
N∑

j=1

aij(f
i(xi)− f j(xj))‖ 6 µ‖

N∑
j=1

aij(x
i − xj)‖ (5)

with µ is a positive constant.
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III. FINITE-TIME CONSENSUS IN MULTI-Σ1 DYNAMICAL SYSTEM

In the following, the networked dynamical systems is subjective to multi-Σ1 analysis under

the protocol (4). Further, as networked topology we will distinguish a directed and an undirected

graphs. The reader may find more details about the graph theory in [4]. To solve a finite-time

consensus, our approach is addressed in Proposition III.1 for a given directed graph, and in

Proposition III.2 for the undirected graph case.

Proposition III.1. For a given fixed directed graph G strongly connected, the protocol (4)

associated to multi-Σ1 solves a finite-time consensus problem.

Proof. For x = (x1, ...xN)T and u = (u1, ..., uN)T , the multi-Σ1 is defined by

ẋ = IN ⊗B(xi)u (6)

One starts the analysis by an adequate change of variable, where for i ∈ I,

yi =
N∑

j=1

aij(x
i − xj) (7)

Therefore,

ẋi = B̃φα(yi) (8)

Let us rewrite the protocol (4) as ui = −C(xi)φα(yi), further let y = (y1, ..., yN)T , then in a

compact form

u = −(IN ⊗ C(xi))φα(y) (9)

From (7), we have

y = (L⊗ In)x (10)

At this stage, we are able to introduce the protocol (4) into the multi-Σ1, and this after the time

derivative of (10). This leads to

ẏ = (L⊗ In)ẋ

= −(L⊗ In)(IN ⊗B(xi))(IN ⊗ C(xi))φα(y)

= −(L⊗ B̃)φα(y) (11)
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where in the last written we use the Kronecker product properties (see [1]). The goal is

to prove that y reaches zero in finite time. As G is strongly connected, there exists a vector

w = [w1, w2, ........., wN ]T ∈ Rn×N , such that wT L(A) = 0 (by lemmaII.3), and where for

1 6 i 6 N , wi = [wi
1, w

i
2, ..., w

i
n]T . Taking the Lyapunov function candidate

V (y) =
1

1 + α

N∑
i=1

< wi, δ1+α(yi) > (12)

where < ., . > denotes the scalar product. A detailed form is given by

V (y) =
1

1 + α

N∑
i=1

n∑

k=1

wi
k|yi

k|1+α

Evaluating V along the transformed vector field solutions, using (11) and (7)-(8), we obtain

V̇ (y) =
N∑

i=1

n∑

k=1

wi
kϕα(yi

k)
dyi

k

dt

=
N∑

i=1

n∑

k=1

wi
kϕα(yi

k)(
N∑

j=1

aij(ẋ
i
k − ẋj

k)) (13)

=
N∑

i=1

n∑

k=1

wi
kϕα(yi

k)(
N∑

j=1

n∑
m=1

aij[b̃kmϕα(yi
m)− b̃kmϕα])

After having processed the last equality in matrix form, it is straightforward to prove that

V̇ (y) = −φT
α(y)(IN ⊗ diag(w))(L⊗ B̃)φα(y)

Now, let E , 1

2
((diag(w)L⊗ B̃) + (L⊗ B̃diag(w))T , which means that

V̇ = −φT
α(y)Eφα(y) (14)

Introduce

Ω = {z ∈ RnN : zT z = 1 and z = φα(ϑ) for ϑ ⊥ w}

which is obviously a compact set, and as the function zT Ez is continuous in Ω, then a nonzero

minimum exists min
z∈Ω

zT Ez 6= 0. Moreover, E is the Laplacian matrix of a undirected weighted

graph G(E), and it is positive semi-definite (Lemma II.3). Then, min
z∈Ω

zT Ez > 0.

Let K1 = min
z∈Ω

zT Ez > 0, as φα(y)√
φT

α (y)φα(y)
∈ Ω, then

φT
α(y)Eφα(y)

φT
α(y)φα(y)

=
φT

α(y)√
φT

α(y)φα(y)
E

φα(y)√
φT

α(y)φα(y)
> K1
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The goal is to prove that the derivative of V satisfies V̇ 6 −cV β (by Lemma II.1). Using (14),

we obtain

V̇ =
φT

α(y)Eφα(y)

φT
α(y)φα(y)

φT
α(y)φα(y)

V β
V β

6 −K1
φT

α(y)φα(y)

V β
V β

From the fact that

φT
α(y)φα(y)

V β
=

N∑
i=1

n∑

k=1

|yi
k|2α

(
N∑

i=1

n∑

k=1

wi
k

α + 1
|yi

k|1+α)β

>

N∑
i=1

n∑

k=1

|yi
k|2α

N∑
i=1

n∑

k=1

(
wi

k

α + 1
)β|yi

k|(1+α)β

(Lemma II.5)

if we choose β = 2α
1+α

, and let k2 = max
i

max
k

(
wi

k

α + 1
)β . Obviously k2 > 0. Finally, we can prove

that there exists c = K1

K2
> 0, meaning that

V̇ (y) 6 −c(V (y))
2α

1+α (15)

Thus, V will reach zero in finite time T∗(y(0)) =
(α + 1)

(1− α)c
V (y(0))

1−α
α+1 (by Lemma II.1).

Consequently, the proposed protocol (4) applied to multi-Σ1 solves a finite-time consensus

problem in the sense of (3). This ends the proof.

¥

Proposition III.2. For a given fixed undirected and connected graph G, the protocol (4) asso-

ciated to multi-Σ1 solves a consensus problem in finite time.

Proof. Recall that the multi-Σ1 is defined by

ẋ = IN ⊗B(xi)u (16)

with x = (x1, ...xN)T and u = (u1, ..., uN)T ,
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One considers yi as in (7), y as in (10), and ẏ is as in (11). The goal is also to prove that y

reaches zero in finite time. Taking the Lyapunov function V : RNn → R+ such that ∀ y ∈ RNn

V (y) =
1

1 + α
yT φα(y) (17)

which is positive definite with respect to y, and consider the time derivative of V along the

trajectories of (11), we get

V̇ (y) = φT
α(y)

dy
dt

= −φT
α(y)(L⊗ B̃)φα(y)

(18)

Let

D(xi) =




0n

γ2(x
i)

. . .

γN(xi)




where 0n = diag{0, ..., 0} ∈ Rn×n, and ∀j = 2, ..., N γj(x
i) = λj(L)%n(xi) with %n(xi) =

diag{0, µ2(x
i), ..., µn(xi)} ∈ Rn×n, and where µ2(x

i), ..., µn(xi) are the eigenvalues of the matrix

B̃ given in increasing order. λj(L) denotes the jth eigenvalue of L. Let them be λ2(L), ..., λN(L)

in increasing order. Since G is connected (by Lemma II.2) λ2(L) > 0. Therefore, ∀xi we have

λ2µ2(x
i) > 0.

Further, since L ⊗ B̃ ∈ RNn×Nn is symmetric matrix, then there exist an orthogonal matrix

P ∈ RNn×Nn such that L⊗ B̃ = P T D(xi)P . Let zα = Pφα(y), thus

V̇ = −zT
αDzα

6 −λ2µ1(x
i)‖zα‖2

6 −λ2µ1(x
i)‖φα(y)‖2 (19)

with λ2µ1(x
i) = min

zα⊥1Nn

zT
αDzα

zT
αzα

.

Let k = min
xi∈RN

λ2µ1(x
i) > 0 and y = 1N ⊗ yi = (ỹ1, ..., ỹNn)T consequently,
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V̇ 6 −k

Nn∑
i=1

|ϕα(ỹi)|2

6 −k

Nn∑
i=1

|ỹi|2α

6 −k(
Nn∑
i=1

|ỹi|α+1)
2α

α+1 (by Lemma II.5) (20)

Then

V̇ 6 −k(α + 1)
2α

α+1 V
2α

α+1 (21)

Since 0 < 2α
α+1

< 1 and k(α+1)
2α

α+1 > 0, and by Lemma II.1, the above differential equation gives

that V reaches zero in finite time
(α + 1)V (y(0))

1−α
α+1

(1− α)k(α + 1)
2α

α+1

. Therefore, based on (1), the multi-Σ1

under the protocol (4) leads to a finite-time consensus. This ends the proof.

¥

Remarque III.3. For a given fixed directed/undirected graph G, from inequalities (15) and (21) if

we take α = 1, then the finite-time consensus in multi-Σ1 becomes an asymptotically consensus.

Remarque III.4. The protocol (4) is similar to [14] by taking B = C = 1 which was applied

to multi-particle system ẋi = ui in network.

IV. FINITE-TIME CONSENSUS IN MULTI-Σ2 DYNAMICAL SYSTEM

Let us recall that a multi-Σ2 dynamical system is a networked dynamical systems where each

system’s dynamic model is given by (2). The consensus protocol is as given in (4). Note that

various autonomous systems are modeled by (2), and Assumption II.8 can be easily verified.

In the following, the consensus problem is analyzed for the directed and undirected graphs,

considered has a spanning tree and strongly connected. Recall that for a given graph G, the

purpose is to prove ‖xi(t)− xj(t)‖ → 0 in finite time ∀i, j = 1, ..., N , while ui is as in (2).

Proposition IV.1. If the graph G has a spanning tree and strongly connected and the drift

term satisfies the inequality (5), then the multi-Σ2 based on (2) with the protocol (4) realize a

homogenous/heterogenous consensus in finite-time.
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Proof. Using the change of variable given by (7), we have

ẏi =
N∑

j=1

aij(f
i(xi)− f j(xj)) +

N∑
j=1

aij[B(xi)ui −B(xj)uj] (22)

For y = (y1, ..., yN)T , f(x) = (f 1(x1), ..., fN(xN))T and using (10), the multi-Σ2 is given by

ẏ = (L⊗ In)f(x)− (L⊗ B̃)φα(y) (23)

From inequality (5), we have

‖(L⊗ In)f(x)‖ 6 c‖(L⊗ In)x‖ = c‖y‖ (24)

With respect to the Lyapunov function (12), the time derivative of V (y) along the networked

system trajectories (23), we may write

V̇ (y) =
N∑

i=1

n∑

k=1

wi
kϕα(yi

k)
dyi

k

dt

=
N∑

i=1

n∑

k=1

wi
kϕα(yi

k)(
N∑

j=1

aij(ẋ
i
k − ẋj

k))

=
N∑

i=1

n∑

k=1

wi
kϕα(yi

k)(
N∑

j=1

aij(f
i
k(x

i)− f j
k(xj))) + V̇/(1)

where V̇/(1) is the derivative of the Lyapunov function with respect to the driftless system (1),

given by the previous section and satisfies the inequality (15). Now, using the Assumption II.8

and the equality (13), we obtain

V̇ (y) 6 µ

N∑
i=1

n∑

k=1

wi
ksgn(yi

k)|yi
k|α(

N∑
j=1

aij(x
i − xj))− c(V (y))

2α
1+α

6 µ

N∑
i=1

n∑

k=1

wi
k|yi

k|α+1 − c(V (y))
2α

1+α

6 µ(1 + α)V (y)− c(V (y))
2α

1+α

6 −V
2α

α+1 [c− µ(1 + α)V
1−α
1+α ] (25)

Since 1−α
1+α

> 0 and V is continuous function which takes 0 at the origin (y = 0), there exists

an open neighborhood Ω of the origin that permits to write

V̇ (y) 6 − c

2
[V (y)]

2α
α+1 (26)
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by Lemma II.2, V reaches zero at an estimated finite time

T∗(y(0)) =
2(α + 1)

c(1− α)
V (y(0))

1−α
α+1

Therefore the multi-Σ2 based on (2) and the protocol (4) lead to a homogenous/hetrogenous

finite-time consensus, as f i(xi) may (not) be identical in (22). This ends the proof.

¥

For the consensus problem of mulit-Σ2, let us analyze the case of an undirected graph, while

the protocol is similar to (4).

Proposition IV.2. Given an undirected and connected graph G, further we consider that the

inequality (5) holds, then the multi-Σ2 described from (2) with the protocol (4) lead to a

homogenous/heterogenous finite-time consensus.

Proof. From the change of variable given by (7), we have

ẏi =
N∑

j=1

aij(f
i(xi)− f j(xj)) +

N∑
j=1

aij[B(xi)ui −B(xj)uj] (27)

For y = (y1, ..., yN)T , f(x) = (f 1(x1), ..., fN(xN))T and using (10), the multi-Σ2 is as

ẏ = (L⊗ In)f(x)− (L⊗ B̃)φα(y) (28)

While from inequality (5), we have

‖(L⊗ In)f(x)‖ 6 µ‖(L⊗ In)x‖ = µ‖y‖ (29)

Using the Lyapunov function (17), and consider the time derivative of V (y) along trajectories

of the multi-Σ2 (28), it leads to

V̇ (y) = φT
α(y)(L⊗ In)f(x)− φT

α(y)(L⊗ B̃)φα(y)

6 µ|φT
α(y)y‖ − φT

α(y)(L⊗ B̃)φα(y)

Let y = 1N ⊗ yi = (ỹ1, ..., ỹNn)T , consequently from (20) we get

V̇ (y) 6 µ

Nn∑
i=1

|ỹi|α+1 − k(
Nn∑
i=1

|ỹi|α+1)
2α

α+1

6 −V
2α

α+1 [k(α + 1)
2α

α+1 − µV
1−α
1+α ] (30)
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where k = min
xi∈Rn

λ2µ1(x
i) defined in the proof of Proposition III.1. Since 1−α

1+α
> 0 and V is

continuous function which takes 0 at the origin, there exists an open neighborhood Ω of the

origin that permits to write

V̇ (y) 6 −k(α + 1)
2α

α+1

2
[V (y)]

2α
α+1 (31)

From Lemma II.2, V reaches zero at an estimated finite time

T∗(y(0)) =
(α + 1)V (y(0))

1−α
α+1

2(1− α)k(α + 1)
2α

α+1

Therefore, the multi-Σ2 defined from model (2) and the protocol (4) achieve a homogenous/hetrogenous

finite-time consensus, as f i(xi) may (not) be identical in (22). This ends the proof.

¥

Remarque IV.3. It is straightforward from Proposition IV.2 proofs, if α = 1, then the multi-Σ2

finite-time consensus becomes an asymptotically one.

V. ILLUSTRATIVE EXAMPLES

Two illustrative examples are considered where the multi-unicycle represents a controlled

nonlinear system in network modeled by (1) that follows the theoretical analysis of multi-Σ1.

A multi-agent based on second order dynamics which implies networked multi-model of type

(2), and follows the subsequent analysis of multi-Σ2. Each multi-system associated protocol is

deduced from (4) and the results are illustrated by simulations. In figure Fig.1, the directed graph

is associated to 3 agents (left) while the undirected graph is applied to 4 agents (right).

2

3

1

2

4

1

3

Fig.1.Gasadirectedgraphfor3agents(a),andanundirectedgraphfor4agents(b).
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A. Multi-unicycle consensus for the rendezvous problem

Consider N wheeled mobile robots where the ith nonholonomic kinematic model is as (uni-

cycle): 


ẋi

ẏi

θ̇i


 =




cos θi 0

sin θi 0

0 1





 ui

wi


 i = 1, ..., N (32)

where (xi, yi, θi) denotes the position and the orientation in a inertial frame. The inputs ui and

wi are the linear and angular velocities, respectively. Let

B =




cos θi 0

sin θi 0

0 1




Two constructed matrices to C are proposed, and this in order to see the role of the control

matrix C in (4). Hence, the control matrix C in (4) is first taken as

C1 =


 cos θi sin θi 0

− sin θi cos θi 0


 and second as C2 =


 cos θi sin θi 0

− sin θi cos θi 1




It is straightforward to verify the property of BC1 and BC2 in Assumption II.7, where their

eigenvalues are {0, 0, cos2 θi + sin2 θi} and {0, 1, cos2 θi + sin2 θi}, respectively. We propose to

study the finite-time consensus of multi-unicycle given by (1) as multi-Σ1 (system without drift

term in network). Based on Proposition III.1, the finite-time consensus problem can be solved

through the following protocols ((ui)C1 , (wi)C1) and ((ui)C2 , (wi)C2) where (ui)C1 = (ui)C2 = ui

which are computed following to C1 and C2 matrices. Then we obtain,

ui = −ϕα(
N∑

j=1

aij(xi − xj)) cos θi − ϕα(
N∑

j=1

aij(yi − yj)) sin θi (33)

(wi)C1 = ϕα(
N∑

j=1

aij(xi − xj)) sin θi − ϕα(
N∑

j=1

aij(yi − yj)) cos θi (34)

(wi)C2 = ϕα(
N∑

j=1

aij(xi − xj)) sin θi − ϕα(
N∑

j=1

aij(yi − yj)) cos θi − ϕα(
N∑

j=1

aij(θi − θj)) (35)

Fixed directed graph (Fig. 1a). The following initial conditions for the three unicycles in

networks are given by,

(x1, y1, θ1)(t = 0) = (4, 2,
π

4
)
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(x2, y2, θ2)(t = 0) = (2,−1,−π

2
)

(x3, y3, θ3)(t = 0) = (−6, 10,
π

2
)
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Fig. 2. The 3 unicycles rendezvous under the matrix control

C1 (directed graph G)
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Fig. 3. The 3 unicycles rendezvous under the matrix control

C2 (directed graph G)

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

co
nt

ro
l i

np
ut

 u
i

 time[sec]

 

 
u1
u2
u3

Fig. 4. Protocols ui as designed in (33) under C1 (directed

graph G)

0 10 20 30 40 50
−4

−3

−2

−1

0

1

2

3

4

co
nt

ro
l i

np
ut

 u
i

 time[sec]

 

 
u1
u2
u3

Fig. 5. Protocols ui as designed in (33) under C2 (directed

graph G)

The simulation result sketched in Fig. 2 is obtained under the protocol (33,34) with the control

matrix C1, while Fig. 3 shows the results under the protocol (33,35) with C2. The matrix C must

be designed following to Assumption II.7, but as we see in figures Fig. 2-3, it plays an important
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Fig. 6. Protocols wi as designed in (34) under C1 (directed

graph G)
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Fig. 7. Protocols wi as designed in (35) under C2 (directed

graph G)

role in the behaviors of agents, at least for the rendezvous problem. This can be viewed in figures

Fig. 4-5 for the protocols ui and figures Fig. 6-7 with the protocols wi, obtained for C1 and C2,

respectively. The decision can be toward the C2 control matrix as there is no oscillation after

the establishment time.

Fixed undirected graph (Fig. 1b). The four unicycles are initialized as,

(x1, y1, θ1)(t = 0) = (4, 2,
π

4
)

(x2, y2, θ2)(t = 0) = (2,−1,−π

2
)

(x3, y3, θ3)(t = 0) = (1, 8,
2π

3
)

(x4, y4, θ4)(t = 0) = (−1,−4, π)

The case of four unicycles obey to an undirected graph presented in Fig. 8 (using C1) and

Fig. 9 (with C2). Clearly the control matrix C of the protocol affects the behavior of the

consensus and ensures the rendezvous. Figures Fig. 10-11 show the protocols ui under C1 and

C2, respectively. Likewise, figures Fig. 12-13 sketch the protocol wi. The results are obtained

with an undirected topology. In terms of the protocol amplitudes and times of establishment,

improvement is obtained with the C2 matrix. However, comparison can be made between Fig.
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Fig. 8. The 4 unicycles rendezvous (undirected graph G)

under the matrix control C1
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Fig. 9. The 4 unicycles rendezvous (undirected graph G)

under the matrix control C2
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Fig. 10. Protocols ui as designed in (33) under C1 (undi-

rected graph G)
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Fig. 11. Protocols ui as designed in (33) under C2 (undi-

rected graph G)

5 and Fig. 11 where the establishment time is reduced by half using the directed graph instead

of the undirected one.
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Fig. 12. Protocols wi as designed in (34) under C1 (undi-

rected graph G)
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Fig. 13. Protocols wi as designed in (35) under C2 (undi-

rected graph G)

B. Multi-agent with second-order dynamic

Consider a second-order dynamic of an agent (i ∈ I)

ẋi = vi

v̇i = ui (36)

where xi ∈ Rn denotes the position, vi ∈ Rn it is time derivative, and ui ∈ Rn is the control

input. The dynamics (36) take the form given by (2), and it will be treated as multi-Σ2, with

xi =


 xi

vi


, fi(xi)


 vi

0


 and B =


 0

1


.

Condition (5) on fi can be easily verified (Assumption II.8).

Taking C = (1 1), from protocol (4) and Proposition IV.2, we are able to propose the following,

ui = −ϕα(
N∑

j=1

aij(xi − xj))− ϕα(
N∑

j=1

aij(vi − vj)) (37)

The double integrator (36) under ui achieves consensus in positions and velocities. Note that

the finite-time consensus for multi-agent networks with second-order agent dynamics as given

by (36) was studied by Wang et al. [16] in the case of undirected graph. The consensus protocol

proposed here for the double integrator is a direct application of Proposition IV.2, and is different

from that given in [16].
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Fixed directed graph (Fig. 1a). Numerical simulation is presented to illustrate consensus of

three agents through the graph (Fig. 1a). The control parameter α = 0.5, and each agent initial

position vector is as

(x1, x2, x3)(t = 0) = (5, 10, 1)(m)

and the initial velocity vector is

(v1, v2, v3)(t = 0) = (2,−1, 8)(m/s)

Consider a fixed directed graph (Fig. 1a), figures in Fig.14 and Fig. 15 show the effectiveness

of the given protocol (37) as positions and velocities achieve consensus in finite time.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

 p
os

iti
on

 time[sec]

Fig. 14. Consensus in positions of 3 second order dynamics

(directed graph).
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Fig. 15. Consensus in velocities of 3 second order dynamics

(directed graph).

Fixed undirected graph (Fig. 1b). Numerical simulations are presented with the control

parameter α = 0.5, the initial position vector is

(x1, x2, x3, x4)(t = 0) = (5, 10, 1,−5)(m)

and the initial velocity vector is

(v1, v2, v3, v4)(t = 0) = (2,−1, 8,−4)(m/s)

The 4 double integrators (36) with the protocol (37) meet finite-time consensus in positions and

velocities, as given by figures Fig. 16-17. The establishment time for the directed graph (Fig.
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16-17) is less important than the undirected graph (Fig. 14-15). The amplitudes of velocities

(Fig. 17) are more significant for the undirected graph in comparison to the directed one, as

given by Fig. 15. To solve the finite-time consensus problem, protocols given by figures Fig.

18-19 imply the subsequent observations which promote the directed graph in terms of times

and amplitudes in multi-second order dynamics.
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Fig. 16. Consensus in positions for 4 agents as second order

dynamics (undirected graph).
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Fig. 17. Consensus velocities for 4 agents as second order

dynamics (undirected graph).
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Fig. 18. Protocols ui as specified by (37), case of the

directed graph.
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Fig. 19. Protocols ui as specified by (37), case of the

undirected graph.
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VI. CONCLUSION

In this paper, controlled dynamic systems in network are described by two main nonlinear

and continuous first-order differential equations with/without drift terms. Finite-time consensus

are achieved despite complexity in the networked models, and this due to heterogeneity of the

components and the vector size of states. Some protocols are proposed and sufficient conditions

are established leading to finite-time consensus of controlled nonlinear systems in network.

Following to consensus objectives, the multi-system behaviors in simulations, as was given

for the multi-unicycle and the multi-second order dynamics, a directed graph presents some

advantages such as less amplitude of protocols and low time of establishment. Results for finite-

time consensus for homogenous/heterogenous multi-system are also achieved.
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