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Abstract: In this paper we treat the problem of
the planar tracking motion of a particular structure
of a four rotors mini-flying robot where two rotors
are directional (bidirectional). Thus, the yaw an-
gle is used to control the planar movement instead
off inclining the engine. This last technique is usu-
ally adopted in the literature for this kind of aerial
vehicle. An explicit time-varying feedback law is
proposed for the bidirectional system that fails the
Brockett’conditions. In order to solve the tracking
problem, we propose a point-to-point path steering
considering the system flat output. The equations
of motion are dynamically represented and partially
controlled by the yaw angle. Theoretical results are
supported by an important part of analysis in sim-
ulation. Key-Words: - Planar motion, Stabilization,

Tracking, flatness

1. INTRODUCTION

Unmanned Aerial Vehicles (UAV) terrain control is a
matter of both interest for scientific research and mili-
tary control constraint consist in planning and follow-
ing predefined trajectories. Examples range from un-
manned and remotely piloted airplanes and submarines
performing surveillance and inspection, mobile robots
moving on factory floors and multi-fingered robot hands
performing inspection and manipulation inside the hu-
man body under a surgery control. All these systems
are highly nonlinear and require accurate performance.
The Modeling and control of aerial vehicles were de-
veloped for blimps [1] and mini rotor-crafts (X4-flyer)
[2, 3]. The industrial technical characteristics of the
mini-UAV presented in this paper should respect 2 kg
in mass, a wingspan of 50 cm and with a 30 mn flying-
time. It is an autonomous hovering system, capable
of vertical take-off, landing, lateral motion and quasi-

stationary (hover or near hover) flight conditions. Com-
pared to helicopters, named quad-rotor,[4, 5, 6, 7] the
four-rotor rotorcraft has some advantages[8]: given that
two motors rotate counter clockwise while the other
two rotate clockwise, gyroscopic effects and aerody-
namic torques tend, in trimmed flight, to be canceled.
A model for the dynamic and configuration stabiliza-
tion of quasi-stationary fight conditions of a four ro-
tor vertical take-off and landing (VTOL) was studied
by [8] where the dynamic motor effects are incorpo-
rating and a bound of perturbing errors was obtained
for the coupled system. The stabilization problem of a
four rotor rotorcraft is also presented in [9] where the
nested saturation algorithm is considered. With the in-
tent to stabilize aircrafts that are able to take-off verti-
cally as helicopters, the control problem was solved for
the planar vertical take-off and landing (PVTOL) with
the input/output linearization procedure [10] and theory
of flat systems [11, 12, 13]. An X4 bidirectional rotors
mini-flyer operates as a omnidirectional UAV. Vertical
motion is controlled by collectively increasing or de-
creasing the power for all motors. Lateral motion, in
x-direction or in y-direction, is not achieved by dif-
ferentially controlling the motors generating a pitch-
ing/rolling motion of the airframe that inclines the col-
lective thrust (producing horizontal forces) and leads to
lateral accelerations (case of the X4-flyer). But, two
rotors are directional introduce two internal degrees of
freedom used to permute between the x/y motion. This
work completes the paper presented in [3] where, to
overcome singularities, we presented a continuous vari-
able structure controller including path planning. The
x/y motion considered as a planar movement needs to
stabilize the aerial vehicle in pitch and roll. Hence, two
independent controllers can be easily established as the
dynamics in pitch and roll are in the form of a decou-
pled second order differential equations: τθ = θ̈ and
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τφ = φ̈ [2]. We consider the planar movement and only
the yaw based control will steer the system between the
two directions. We show that path planning for the yaw
motion steers the system along the reference path.
The paper is organized as following. Section 2 deals the
planar model and the necessary considered variables.
The STLC is investigated in section 3 where we prove
that the system fails Brockett’conditions, thus, the ne-
cessity of the time varying controller. In order to stabi-
lize the equilibrium, in section 4, we propose a control
algorithm based on the augmented system. Section 5
details the problem of the tracking with path planning
based on the system flat output. Finally, we conclude
the paper with simulations and comments.

2. EQUATION OF MOTION

The X4-bidirectional aerial vehicle is minimum in size
consisting of four individual electrical fans attached to
a rigid bar. Two of them can be oriented by an electric
servo-mechanism. This makes the system different of a
conventional X4-flyer.
We consider a local reference airframe <G =
{G,Eg

1 , Eg
2 , Eg

3} attached to the center of mass G of
the vehicle. The center of mass is located at the inter-
section of the two rigid bars, each of which supports
two motors. Equipment (controller cartes, sensors, etc.)
onboard are placed not far from G. The inertial frame is
denoted by <o = {O,Ex, Ey, Ez} such that the verti-
cal direction Ez is upwards. Let the vector ξ = (x, y, z)
denote the position of the center of mass of the airframe
in the frame <o. While the rotation of the rigid body
is determined by a rotation R : <G → <o, where
R ∈ SO(3) is an orthogonal rotation matrix. This ma-
trix is defined by the three Euler angles, θ(pitch), φ(roll)
and ψ(yaw) which are regrouped. A sketch of the X4-
bidirectional is given in Fig1 and Fig.2. In the follow-
ing we recall only equations due to translations and the
attitude yaw dynamic. The reader can refer to [2] for
further details in modeling.

mẍ =u sin(ψ)
mÿ =u cos(ψ) (1)

mz̈ =mg − v

ψ̈ =τψ

where (x, ẋ, y, ẏ, z, ż, ψ, ψ̇)t ∈ R8 is the state,
(u, v, τψ)t ∈ R3 is the control vector. The lift (collec-
tive) force v and the direction input u combine the prin-
cipal non conservative forces applied to the system in-
cluding forces generated by the motors and drag terms.
Drag forces and gyroscopic due to motors effects are
not considered. Finally, τψ denotes the torque input will
control the yaw motion.

Figure 1: Frames considered in the modeling.

3. LOCAL CONTROLLABILITY
INVESTIGATION

In the following we show that the system (1) is Small
Time Locally Controllable (STLC) in the neighborhood
of the equilibrium. First, we introduce the equivalent
system

ẋ =x1 ; ẋ1 =
1
m

u sin(ψ)

ẏ =y1 ; ẏ1 =
1
m

u cos(ψ) (2)

ż =z1 ; ż1 = g − 1
m

v

ψ̇ =w ; ẇ = τψ

By adding an integrators, we obtain the augmented sys-
tem

ẋ =x1 ; ẋ1 =
1
m

α sin(β)

ẏ =y1 ; ẏ1 =
1
m

α cos(β) (3)

α̇ =u ; β̇ = ψ

Since the behavior of z and ψ can be achieved re-
spectively by v and τψ, then, these dynamics are
omitted. For the augmented system above u and ψ are
considered as new input variables.

Thus, we have the following result
Proposition. The system (3) is STLC near the equilib-
rium.
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Proof. The new system (3) can be rewritten in compact
form as

Ẋ = f0(X) + uf1(X) + ψf2(X) (4)

where X = (x, x1, y, y1, α, β)t ∈ R6 is the vector of
states and U = (u, ψ)t ∈ R2 is the control vector.
Further, we have

f0(X) =(x1,
1
m

αsin(β), y1,
1
m

α cos(β), 0, 0)t

f1(X) =(0, 0, 0, 0, 1, 0)t

f2(X) =(0, 0, 0, 0, 0, 1)t

It is clear that vector fields f0(X), f1(X) and f2(X)
are real-analytic.
Let’s compute the different Lie Brackets, we have

[f1, f0] =(0,
1
m

sin(β), 0,
1
m

cos(β), 0, 0)t

[f2, [f1, f0]] =(0,
1
m

cos(β), 0,− 1
m

sin(β), 0, 0)t

[[f1, f0], f0] =(
1
m

sin(β), 0,
1
m

cos(β), 0, 0, 0)t

[f2, [[f1, f0], f0]] =(
1
m

cos(β), 0,− 1
m

sin(β), 0, 0, 0)t

Then, after computing the different Lie brackets, we ob-
tain

B(X) =span{f1, f2, [f1, f0], [f2, [f1, f0]], [[f1, f0], f0],
[f2, [[f1, f0], f0]]}(X)

which has dimension 6 for every X ∈ R6. Thus, the
strong accessibility rank condition is satisfied and con-
sequently, the system (S) is locally strongly accessible
for all X ∈ R6. Furthermore, it is straightforward to
prove that system (4) is small time locally controllable
in neighborhood of the equilibrium within the meaning
of Sussmann [14].

4. STABILIZATION PROBLEM

The Brockett necessary condition related to static stabi-
lization is addressed in the follows (more explanations
are in [15]).

Proposition 1. The system (3) cannot be stabilized by
a static smooth feedback law.
Proof. Based on the Brockett’s result, we prove
that we cannot stabilize the model with a stationary
continuous control. In fact, for any point under the
form Xc = (0, 0, 0, 0, 0, ε) in the neighborhood of 0Rn ,
where ε 6= 0 is not part of the image set.
In the following proposition we develop a continuous
time-varying feedback law (more explanations are

given in [16]).

Proposition 2. Consider the following time-varying
feedback law

αd =2mρ(x) sin(
t

ε
)− 2m(y + y1)

βd =− 2
sin( t

ε)
ρ(x)

(x + x1)

u =− k1(α− αd) + α̇d (5)

ψ =− k2(β − βd) + β̇d

with ρ(x) = (x2 + x2
1 + y2 + y2

1)
1
2 . Then for a

suitable choice of positive parameters (k1, k2), there
exists ε0 such that for any ε ∈ (0, ε0) and large
enough (k1, k2) the feedback defined above stabilizes
locally-exponentially the system (3). ε is a parameter
that we need to adjust.

Proof. The initial system can be rewritten in compact
form as following

Ẋ = f(X, t)

where
X = (x, x1, y, y1, α, β)t ∈ R6

and

f(X, t) = (x1,
1
m

α sin(β), y1,
1
m

α cos(β), u, ψ)t ∈ R6

The associated linearized model is obtained

ẋ =x1 ; ẋ1 =
1
m

αβ

ẏ =y1 ; ẏ1 =
1
m

α (6)

α̇ =u ; β̇ = ψ

The analysis consists to take part of u = −k1(α−αd)+
α̇d and ψ = −k2(β − βd) + β̇d which ensure that α →
αd and β → βd as time go to ∞. Therefore, in closed
loop

ẋ =x1 ; ẋ1 =
1
m

αdβd

ẏ =y1 ; ẏ1 =
1
m

αd (7)

Due the periodic time-invariant control, the resulting
system is also a periodic time-invariant system which
can be written in the form:

Ẋ = h(X,
t

ε
) = h0(X) + g1(

t

ε
)h1(X) + g2(

t

ε
)h2(X)

where h(X, t) = (x1,
1
mαdβd, y1,

1
mαd)
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is homogeneous of degree zero with respect to the dila-
tion

δλ(X, t) = (λx, λx1, λy, λy1, t)

further

h0(X) =(x1,−2(x + x1), y1,−2(y + y1))

h1(X) =(0,
4

ρ(X)
(x + x1)(y + y1), 0,

2
ρ(X)

)

h2(X) =(0,−4(x + x1), 0, 0)
g1(t) = sin(t)

g2(t) = sin2(t)− 1
2

(8)

are continuous 2π-periodic functions such that∫ 2π

0
gi(τ)dτ = 0. We approximate this system by an

averaged system which is autonomous. The averaged
system is defined as

ẋ =x1

ẋ1 =− 2(x + x1) (9)

ẏ =y1

ẏ1 =− 2(y + y1)

Now it is straightforward to prove the exponential sta-
bility of the averaged system origin. Consequently,
the origin of the initial system is asymptotically stable
(more theoretical analysis is in [?]).

5. TRACKING WITH POINT-TO-POINT
STEERING

In this section we solve the tracking problem using the
flat output of the system. More explanation about flat-
ness theories can be found in [11, 12, 13].
For a given smooth reference trajectory (xr, yr), the
model (10) takes this form, where the subscript r de-
notes the reference.

mẍr =ur sin(ψr)
mÿr =ur cos(ψr) (10)

ψ̈r =τ r
ψ

where the dynamic of z is omitted. Recall that the
objective is to design the controllers u and ψ that en-
sure the reference trajectory tracking. We introduce
u = ur + ∆u and ψ = ψr + ∆ψ.
In the neighborhood of the reference trajectory and
their derivatives (considered smooth), the system (10)
is transformed to the following matrix form

m

( ¨̂∆x
¨̂∆y

)
=

(
cos(ψr) −ursin(ψr)
sin(ψr) urcos(ψr)

)(
∆u
∆ψ

)

(11)

The matrix (2x2) in (11) is invertible if ur 6= 0. This
imposes a constraint in the reference trajectory which
should be taken into account. In the following we con-
sider ur 6= 0, hence from (11) we propose the feedback
linearized control law

(
∆u
∆ψ

)
=

1
ur

(
urcos(ψr) ursin(ψr)
−sin(ψr) cos(ψr)

)(
νx

νy

)

(12)

where νx and νy are the new inputs for the new system

¨̂∆x = νx

¨̂∆y = νy (13)

For the appropriate chose of the gain parameters
(kx

i , ky
i )i=1,2, the following inputs ensure that ∆x and

∆y tend to zero asymptotically.

νx = −kx
1

˙̂∆x− kx
2∆x

νy = −ky
1

˙̂∆y − ky
2∆y (14)

Proposition. The following system

mẍ =u sin(ψ)
mÿ =u cos(ψ) (15)

is locally asymptotically stable under the controllers

u =ur + ∆u

ψ =ψr + ∆ψ (16)

where ur = ±
√

(ẍr)2 + (ÿr)2 and ψr =
arctan(ẍr/ÿr). The approximated errors ∆u and
∆ψ are in (14) through out (12).

Remark. In order to circumvent the singu-
larity due to ur who is present in ∆ψ =
1
ur (−sin(ψr)νx + cos(ψr)νy), we suggest to take in

consideration τψ = τ r
ψ − kψ

1
˙̂∆ψ − kψ

2 ∆ψ. In closed

loop, this leads to ¨̂∆ψ + kψ
1

˙̂∆ψ + kψ
2 ∆ψ = 0 with

kψ
1 , kψ

2 > 0. The residue in ∆ψ can be solved from
there. Recall that from the reference path τ r

ψ = ψ̈r.
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Figure 2: Conceptual form of the X4 Super-Flyer.

6. PATH PLANNING AND SIMULATION
RESULTS

In the case of the point to point steering, the following
reference trajectory is introduced.

xr(t) = yr(t) = pd
t2

t2 + (Tf − t)2
(17)

where pd is the desired position and Tf is the necessary
final time to reach the point. Constraints to perform
each trajectory

xr(0) = yr(0) = 0; xr(Tf ) = yr(Tf ) = pd

ẋr(0) = ẏr(0) = 0; ẋr(Tf ) = ẏr(Tf ) = 0

ẍr(0) = ÿr(0) = 0; ẍr(Tf ) = ÿr(Tf ) = 0

The X4-bidirectional flyer robot development and
equipments are in progress in our laboratory. The tests
are envisaged in the future. The total mass of the drone
is m = 2kg. The technical characteristics of the fly-
ing vehicle were presented in [2] (see Fig.2). Fig.3
shows the stabilization of the origin with the time vary-
ing controller. The X4-flyer seeks to stabilize at the ori-
gin. Note that the initial configuration influences the
response behavior as well as the energy consumption.
An example is given in Fig.4 where the behavior of the
controller is very oscillating. The importance of the sta-
bilizing problem with the point to point steering (track-
ing) is that it permits to control the amplitude of the
controller as well as the orientation of the aerial vehi-
cle. Therefore we have considered a regular reference
trajectory respecting the physical limits of the system.
Results are shown in Fig.5,6. The acceleration at the
beginning and deceleration when the X4-flyer reaches
the objective are considered in the path planning.

7. CONCLUSION

The aim of this work was to steer the X4-bidirectional
flying robot using the yaw attitude and the two inclined
rotor forces both in the x − y directions or simultane-
ously. The model describing the dynamic of the aerial
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Figure 3: Time varying stabilization of the origin
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Figure 6: The yaw angle and the yaw reference.

vehicle considers the roll and pitch behaviors stabilized.
Control based time-varying and averaging are proposed
which permits to stabilize the system origin. We have
proved that the planar control of the vehicle using the
yaw angle is possible with a constrained planning path.
The system presents a flat output useful to calculate
states and inputs as function of the reference trajec-
tory. The later helped us in tracking based point-to-
point steering. Complex paths will be studied in the
future for other missions.
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