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Abstract 
 
Augmented reality (AR) deals with the problem of dynamically 
and accurately align virtual objects with the real world. Among 
the used methods, vision-based techniques have advantages for 
AR applications, their registration can be very accurate, and 
there is no delay between the motion of real and virtual scenes. 
However, the downfall of these approaches is their high 
computational cost and lack of robustness. To address these 
shortcomings we propose a robust camera pose estimation 
method based on tracking calibrated fiducials in a known 3D 
environment, the camera location is dynamically computed by 
the Orthogonal Iteration Algorithm. Experimental results show 
the robustness and the effectiveness of our approach in the 
context of real-time AR tracking. 
 
Keywords: Augmented reality, fiducials tracking, camera pose 
estimation, computer vision. 
 
1 Introduction 
 
AR systems attempt to enhance an operator's view of the real 
environment by adding virtual objects, such as text, 2D images, 
or 3D models, to the display in a realistic manner. It is clear that 
the sensation of realism felt by the operator in an augmented 
reality environment is directly related to the stability and the 
accuracy of the registration between the virtual and real world 
objects, if the virtual objects shift or jitter, the effectiveness of 
the augmentation is lost. 
 
Several AR systems have been developed these last years, they 
can be subdivided into two categories: Vision-based AR systems 
(indirect vision) and see-through AR systems (direct vision). 
Vision-based techniques have more advantages for AR 
applications. First, the same video camera used to capture real 
scenes also serves as a tracking device. Second, the pose 
calculation is most accurate in the image plane, thereby 
minimizing the perceived image alignment error. Additionally, 
processing delays in the video and graphics subsystems can be 
matched, thereby eliminating dynamic alignment errors 
[Neumann and Cho, 1996]. Recently, several vision based 
methods of estimating position information from known 
landmarks in the real world scene have been proposed. Bajura 
and Neumann used LEDs as landmarks and demonstrated vision-
based registration for AR systems [Bajura and Neumann, 1995]. 
Uenohara and Kanade used template matching for object 
registration [Uenohara and Kanade, 1995]. State et al. proposed 
a hybrid method of combining landmark tracking and magnetic 
tracking (they used color markers as landmarks) [State et al. 
1996]. 
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In this paper we propose a robust camera pose estimation 
method based on tracking calibrated 2D fiducials in a known 3D 
environment. To efficiently compute the camera pose associated 
with the current image, we combine results of the fiducials 
tracking method with the Orthogonal Iteration (OI) Algorithm 
[Lu et al. 2000]. Indeed, the OI algorithm usually converges in 
five to ten iterations from very general geometrical 
configurations. In addition, it outperforms the Levenberg-
Marquardt method, one of the most reliable optimization 
methods currently in use, in terms of both accuracy against noise 
and robustness against outliers. Knowing the camera poses for 
each image frame, we can integrate virtual objects into a video 
segment. 
 
The remainder of this paper is organized as follows. Section 2 is 
devoted to the system overview. Section 3 describes in details 
the 2D fiducials tracking algorithm. Section 4 introduces the 
Orthogonal Iteration Algorithm and its adaptation to compute the 
camera pose. Experimental results are then presented in section 
5, which show the stability, the robustness to scale, orientation, 
and the computational performance of our approach. Finally, 
section 6 provides conclusions. 
 
2 System Overview 
 
Our vision-based AR system is composed of four main 
components (figure1): 

§ 2D fiducials detection: detect 2D markers in each new 
video image. 

§ 2D-3D correspondence: identification of the detected 
fiducials allows to match 2D image features with their 
calibrated 3D features. 

§ Camera pose estimation: estimating camera pose based on 
2D-3D correspondence. 

§ Virtual world registration: the final output of the system is 
an accurate estimate of camera pose that specifies a virtual 
camera used to project the virtual world into the current 
video image. 
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Figure 1. Vision-based AR system architecture 



3 Fiducials Tracking Algorithm 
 
In our approach we have considered a square-shaped fiducial 
(figure 2.a) with a fixed, black band exterior surrounding a 
unique image interior. The outer black band allows for location 
of a candidate fiducial in a captured image and the interior image 
allows for identification of the candidate from a set of expected 
images. The four corners of the located fiducial allow for the 
unambiguous determination of the position and orientation of the 
fiducial relative to a calibrated camera. Furthermore, in order to 
estimate location of a moving camera in the world coordinate 
system, Fiducials are placed in the fixed, physical environment, 
in this case, the cupboard and the wall (figure 2.b). 

             
Figure 2. (a) Fiducial, (b) 3D environment with two calibrated 

fiducials 
 
Our 2D fiducials tracker must uniquely identify any valid 
patterns within the video frame. Using a method similar to [Kato 
and Billinghurst, 1999], the recognition algorithm proceeds as 
follows: 

Image binarization: the program uses an adaptive threshold to 
binarize the video image (figure 3-b). Binary images contain 
only the important information, and can be processed very 
rapidly. 

Connected regions Analysis: the system looks up connected 
regions of black pixels (figure 3-c) and only select the 
quadrilateral ones. These regions become candidates for the 
square marker. For each candidate found, the system segregates 
the contour chains (figure 3-d) into the four sides of the proposed 
marker, and fits a straight line to each using principal 
components analysis (PCA). Finally, the coordinates of the four 
corners are found by intersecting these lines (figure 3-e) and are 
stored for the next processes. 

Fiducials recognition: for each selected region, the system takes 
the four corners points and maps the enclosed area to a standard 
100x100 template shape. The normalized templates are then 
compared to the stored ones at all four orientations. A variety of 
methods are possible for comparing images, we have used the 
correlation coefficient method because it is luminance invariant. 
So, the mean and standard deviations for the normalized 
template I and stored pattern P are first computed: 
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Then, the correlation coefficient is computed as: 
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(a) Original Image                         (b) Binarization 

  
(c) Connected regions               (d) fiducial edge detection 

 
(e) fiducial corner detection 

Figure 3. Fiducial extraction process 
 
Finally, a correlation matrix is created, relating each found 
marker to each stored template. It allows to allocate the markers 
to templates by finding the greatest correlation coefficient. 
 
4 Camera Pose Estimation 
 
The recognized marker region is used for estimating the current 
camera position and orientation relative to the world coordinate 
system. From the coordinates of four corners of the marker 
region on the projective image plane, a matrix representing the 
translation and rotation of the camera in the real world 
coordinate system can be calculated. Several algorithms have 
been developed last years. Examples are the Hung-Yeh-
Harwood pose estimation algorithm [Hung et al. 1985] and the 
Rekimoto 3-D position reconstruction algorithm [Rekimoto and 
Ayatsuka, 2000]. In this work we adapted the algorithm 
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proposed by Lu et al. [Lu et al. 2000], namely the Orthogonal 
Iteration Algorithm, to perform the camera pose estimation. 
 
4.1. Camera Model and Coordinates 
 
The configuration of our system includes only a moving CCD 
video camera. There are three principal coordinate systems, as 
illustrated in Figure 4: the world coordinate system W, the 
camera-centered coordinate system C. and the 2D image 
coordinate system U. 
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Figure 4. Camera model and the related coordinates systems 

 
A pinhole camera models the imaging process. The origin of C is 
at the projection center of camera. The transformation from W to 
C is: 
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where the rotation matrix R and the translation vector T  
characterize the orientation and the position of the camera with 
respect to the world coordinate frame. Under perspective 
projection, the transformation from W to U is: 
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where the matrix K: 

 





















α

α

=

100

0

0

0

0

vf

uf

K y

x

 (8) 

contains the intrinsic parameters of the camera, f is the focal 
length of camera, αx , αy are the horizontal and vertical pixel 
sizes on the imaging plane, and (u0,v0) is the projection of 
camera center (principal point) on the image plane. 
 
4.2. Camera Calibration 
 
Internal, as well as, external camera parameters are determined 
by an automated (i.e. with no user interaction) camera calibration 

procedure. A highly precise camera calibration is required for a 
good initialisation of the camera pose tracker. For that purpose, 
we have used our fiducilas tracking algorithm to generate 
enough 2D-3D matched points. The calibration parameters are 
then computed by an iterative least-squares estimation 
[Faugeras, 1993]. 
 
The intrinsic parameters K remain constant during the camera 
tracking mode. The external parameters describe the 
transformation (rotation and translation) from world to camera 
coordinates and undergo dynamic changes during a session (e.g. 
camera motion). Once the camera calibration is finished, the 
system passes in tracking mode, and uses the obtained external 
camera parameters for the first initialisation of the camera pose. 
The current camera pose is then computed using the OI 
algorithm described below. 
 
4.3. Orthogonal Iteration Algorithm 
 
The OI algorithm allows to dynamically determine the external 
camera parameters using 2D-3D correspondences established by 
the 2D fiducials tracking algorithm from the current video 
image. 
 
The main idea of this algorithm is first in defining pose 
estimation using an appropriate object space error function, in 
this case object-space collinearity error vector, and then in 
showing that this function can be rewritten in a way which 
admits an iteration based on the solution to the 3D-3D pose 
estimation or absolute orientation problem [Arun et al. 1987]. 
 
Otherwise, the OI algorithm converge to an optimum for any set 
of observed points and any starting point R(0). However, in order 
to reduce the average number of iteration taken by OI to 
converge, we initialize it near the optimum for each new 
acquired image. So, at time t (corresponding to the current 
image), we initialize the rotation matrix by the matrix R found at 
time t-1 (corresponding to the previous image). 
 
5 Results and Discussion 
 
In our experiments we recorded an image sequence from a 
moving camera pointing at the wall and the cupboard (Figure 
2.b). One fiducial can be seen, at least, in this area. The frame 
rate is 25 frames/s and there are 1000 frames in the over 40 
second long sequence. We tracked the 2D fiducials on every 
frame. When the system identifies a detected fiducial, the 
corresponding overlay information is retrieved from the database 
(in this case 3D two wire frame models: a cube and a pyramid). 
Using the estimated camera pose, these virtual objects can 
correctly be superimposed on the video image. 
 
Figure 5 shows four frames of the video sequence showing 
virtual objects rendering. For each frame, the camera pose was 
estimated using two 2D detected fiducials. From figures (5-a), 
(5-b), (5-c) and (5-d) we can see that virtual objects are well 
superimposed on the real world. Our current implementation 
exhibits an average reprojection error between 0.7 and 1.2 
pixels. 
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Figure 5. Camera tracking results 
 
Figure 6, illustrates the robustness of our approach to: 

§ Effects of scales, the major advantage in using corners for 
tracking is that corners are invariant to scale. Figure (6-a) 
shows that our 2D fiducials tracker can detect and identify 
markers in spite of the large range of distances from the 
camera. 

§ Poor detection: figure (6-b) illustrates the ability of our 
system to well estimate the camera pose when only one 
fiducial is detected. 

§ Effects of orientations, due to perspective distortion, a 
square on the original pattern does not necessarily remain 
square when viewed at a sharp angle and projected into 
image space. Figure (6-c) illustrates the efficiency of our 
system in such situations. 

Otherwise, real-time performance of our system has been 
achieved by carefully evaluating each processing step. We have 
implemented our system on an Intel Pentium 3 500 MHz PC 
equipped with a Matrox 2 acquisition card and an iS2 IS-800 
CCD camera. The average processing time per frame when 
viewing two fiducials is as fellows: 
 
Fiducials identification : 29 ms 
Camera pose estimation : 4 ms 
Augmentation time : 2 ms 
 
As can be seen, processing times are very acceptable for real 
time implementation. 
 
6 Conclusion 
 
In this paper we described a robust solution for vision based 
augmented reality tracking that identifies and tracks, in real-
time, known 2D fiducials made up of corners, in order to 
estimate the camera pose. The major advantages of tracking 
corners are their detection robustness at a large range of 
distances, and their reliability under severe orientations. 
Additionally, we have adapted the orthogonal iteration algorithm 
to our problem and have demonstrate its efficiency in such 
applications. 

An overview of the developed system was described, and 
experiments demonstrated the feasibility and reliability of the 
system under various situations.  
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Figure 6. The system robustness 
 
References 
 
Neumann, U., AND Cho, Y. 1996. A self-tracking Augmented Reality 

Systems". In Proceedings of ACM Virtual Reality Software and 
Technology. 109-115. 

 
Bajura, M., AND Neumann, U. 1995. Dynamic registration correction in 

augmented reality systems. In Virtual Reality Annual International 
Symposium (VRAIS'95). 189-196. 

 
Uenohara, M., AND Kanade, T. 1995. Real-time vision based object 

registration for image overlay. Journal of the Computer in Biology 
and Medicine. 249-260. 

 
State, A, Hirota, G., Chen, D. T., Garrett, W. F., AND Livingston, M. A.. 

1996. Superior augmented registration by integrating landmark 
tracking and magnetic tracking. In SIGRAPH'96 Proceedings. 

 
Lu, C. P, Hager, G. D., AND Mjolsness, E. 2000. Fast and globally 

convergent pose estimation from video images. In IEEE trans. Pattern 
Analysis and Machine Intelligence, Vol. 22 no. 6, 610-622. 

 
Kato, H., AND Billinghurst, M. 1999. Marker Tracking and HMD 

Calibration for a Video-based Augmented Reality Conferencing 
System. In Proceedings of 2nd IEEE and ACM International 
Workshop on Augmented Reality (IWAR ‘99) . 85 -94. 

 
Hung, Y., Yeh, P., AND Harwood, D. 1985. Passive Ranging to Known 

Planar Point Sets. In Proceeding of IEEE International Conference on 
Robotics and Automation , Vol. 1,.80-85. 

 
Rekimoto, J., AND Ayatsuka, Y. 2000. CyberCode: Designing 

Augmented Reality Environments with Visual Tags. Designing 
Augmented Reality Environments. In DARE (2000). 

 
Faugeras, O. 1993. Three-dimentional computer vision: ageometric 

viewpoint. MIT Press. 
 
Arun, K.S., Huang, T.S., AND Blostein, S.D. 1987. Least-Squares 

Fitting of Two 3D Point Sets. In IEEE Trans. Pattern Analysis and 
Machine Intelligence, vol. 9,  698-700. 


