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ABSTRACT 
This paper deals with a characterization of the 

shortest paths for lateral navigation of an autonomous 
underactuated airship taking into account its dynamics 
and actuator limitations. The initial and terminal 
positions are given. We would like to specify the 
control forces that steer the unmanned aerial vehicle to 
the given terminal position requiring the minimal time 
for lateral navigation. The application of Pontryagin’s 
Maximal Principle, allows us to find a family of time-
optimal paths. Based on the symmetry of airship 
dynamics, i.e. with respect to rotation and translation, it 
is possible to construct global trajectories connecting 
two configurations by a succession of  a finite number 
of these time-optimal paths using geometric reasoning. 
 

INTRODUCTION 
Unmanned aerial vehicles are a new focus of 

research, because of their important application 
potential. They can be divided into three different types 
: reduced scale fixed wing vehicles (airplanes), rotary 
wing aircraft (helicopter) or lighter than air vehicles 
(airships). Lighter than air vehicles suit a wide range of 
applications, ranging from advertising, aerial 
photography and survey work tasks. They are safe, cost-
effective, durable, environmentally benign and simple 
to operate. Airships offer the advantage of quiet hover 
with noise levels much lower than helicopters. 
Unmanned remotely-operated airships have already 
proved themselves as camera and TV platforms, 
surveillance and for specialized scientific tasks such as 
earth monitoring and environmental control. An actual 
trend is toward autonomous airships. 

What makes a vehicle lighter than air is the fact that it 
uses a lifting gas (i.e. helium or hot air) in order to be 
lighter than the surrounding air. The principle of 
Archimedes applies in the air as well as under water. 
Airships are powered and have some means of 
controlling their direction. Non rigid airships are the 
most common form nowadays. They are basically large 
gas balloons. The most common form of a dirigible is 
an ellipsoid. It is a highly aerodynamically profile with 
good resistance to aerostatics pressures. Its shape is 
maintained by its internal overpressure. The only solid 

parts are the gondola, the set of propeller (a pair of 
propeller mounted at the gondola) and the tail fins. The 
envelope holds the helium that makes the blimp lighter 
than air. In addition to the lift provided by helium, 
airships derive aerodynamic lift from the shape of the 
envelope as it moves through the air. 

The objective of this paper is to generate a desired 
flight trajectory to be followed by the airship. The 
trajectory generation module generates a nominal state 
trajectory and a nominal control input. A mission starts 
with take-off from the platform where the mast that 
holds the mooring device of the airship is mounted. 
Typically, flight operation modes can be defined as: 
take-off, cruise, landing and hover. After the user has 
defined the goal tasks, the path generator then 
determines a path for the vehicle that is a trajectory in 
space. In Aeronautics, plane flight control often 
involves lateral and longitudinal state decoupling. The 
problem of trajectory generation for lateral control is 
formulated as an optimization problem. This motion 
generation takes into account the constraints on velocity 
and the bound on the rudder angle. The minimum time 
problem is solved using the maximum principle of 
Pontryagin. Once this reference trajectory determined, 
the airship can follow it with an appropriate feedback. 

The lighter than air platform of the 'Laboratoire des 
Systèmes Complexes' is the AS200 by Airspeed 
Airships. It is a remotely piloted airship designed for 
remote sensing. It is a non rigid  long, 1.4m 

diameter and  volume airship equipped with two 
vectorable engines on the sides of the gondola and  
control surfaces at the stern. The four stabilizers are 
externally braced on the full and rudder movement is 
provided by direct linkage to the servos. Envelope 
pressure is maintained by air fed from the propellers 
into the two ballonets located inside the central portion 
of the hull. These ballonets are self regulating and can 
be fed from either engine. The engines are standard 
model aircraft type units.  

m6
36.8 m

4

 

 
American Institute of Aeronautics and Astronautics 

1



 

Figure1 LSC airship platform AS200 

 
AIRSHIP DYNAMIC MODELING 

 
Kinematic modeling 

A general spatial displacement of a rigid body 
consists of a finite rotation about a spatial axis and a 
finite translation along some vector. The rotational and 
translational axes in general need not be related to each 
other. It is often easiest to describe a spatial 
displacement as a combination of a rotation and a 
translation motions, where the two axes are not related. 
However, the combined effect of the two partial 
transformations (i.e. rotation, translation about their 
respective axes) can be expressed as an equivalent 
unique screw displacement, where the rotational and 
translational axes in fact coincide. The concept of a 
screw thus represents an ideal mathematical tool to 
analyze spatial transformation. The finite rotation of a 
rigid body does not obey to the laws of vector addition 
(in particular commutativity) and as a result the angular 
velocity of the body cannot be integrated to give the 
attitude of the body. There are many ways to describe 
finite rotations. Direction cosines, Rodriguez - 
Hamilton's (quaternions) variables, Euler parameters, 
Euler angles, can serve as examples. Some of these 
groups of variables are very close to each other in their 
nature. The usual minimal representation of orientation 
is given by a set of three Euler angles, assembled with 
the three position coordinates allow the description of 
the situation of a rigid body. A direction cosine matrix 
(of Euler rotations) is used to describe the orientation of 
the body (achieved by 3  successive rotations) with 
respect to some fixed frame reference. 

Three reference frames are considered, figure 2, in the 
derivation of the kinematics and dynamics equations of 

motion. These are the Earth fixed frame  considered 

as Galilean, and two local frames attached to airship, the 

body fixed frame  and aeronautic frame . The 

position and orientation of the vehicle should be 

described relative to the inertial reference frame while 
the linear and angular velocities of the vehicle should be 
expressed in the body-fixed coordinate system. This 
formulation has been first used for underwater vehicles. 

fR

mR aR

In this paper, the origin C  of  coincides with the 

center of volume of the vehicle. Its axes are the 
principal axes of symmetry when available. They must 
form a right handed orthogonal normed frame.  

mR

The  axis of the aeronautic frame follows the 

direction of the airship relative velocity  with respect 

to the wind. 

ax

rV
α  is the angle of attack within the  

plane, and 
mm zx

β  the skid angle within the  plane. To 

describe the position and the orientation of the airship 
mm yx

 

 

Figure2 General configuration of frames 

with respect to the inertial reference frame , the 

Eulerian parameterization is used. The three orientation 
angles are: the Roll 

fR

φ , the Pitch θ  and the Yaw ψ . The 

current configuration is then deduced from three 
elementary rotations. The position 1η  and the 

orientation 2η  of the vehicle in  can be respectively 

described by: 
fR

  (1) ( ) ( TTzyx ψθφηη == 2  and  1 )

Then the orientation matrix  between the body fixed 

frame  and reference is given by 
λH

mR fR 2,4: 
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and the transform matrix  between the body fixed 

frame  and the aeronautic frame  can be written 

as: 
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where

 denotes the rotation matrix that 

specifies the orientation of the airship frame relative  to 
the inertial reference frame in inertial reference frame 
coordinates.  is the special orthogonal group of 

order  which is represented by the set of all 

( ) ( )xSxxCx sin  and  cos ==
)3( and SOHaH ∈λ

)3(SO
3 33×  

orthogonal rotation matrices that characteristics are 11:  

1)det(  and  33 == × RIRRT  

33×I  represents the  identity matrix. 33×

This description is valid in the region 
22
πθπ

≤≤− . 

 A singularity of this transformation exists for: 

 Ζ∈±= kk  ,
2

ππθ  

Let's now introduce  as the linear 

velocity of the origin  expressed in  and 

 as the angular velocity expressed in 

that frame. The kinematics of the airship can be 
expressed in the following way: 
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Dynamic modeling 

In this section, analytic expressions for the forces and 
moments acting on the airship are derived. It is 
advantageous to formulate the equations of motion in a 

body fixed frame to take advantage of the vehicle's 
geometrical properties. Applying Newton's laws of 
motion relating the applied forces and moments to the 
resulting translational and rotational accelerations 
assembles the equations of motion for the 6 degrees of 
freedom. The forces and moments are referred to a 
system of body-fixed axes, centered at the airship center 
of volume. We will make in the sequel some 
simplifying assumptions: the earth fixed reference 
frame is inertial, the gravitational field is constant, the 
airship is supposed to be well inflated, the aeroelastic 
effects are ignored, the density of air is supposed to be 
uniform, and the influence of gust is considered as a 
continuous disturbance, ignoring its stochastic 
character. The deformations are considered to be 
negligible. 
Global dynamics equation can be written as 4: 

 )(ηττη mextdM ∑ +=
⋅⋅

 (6) 

where  and dM )(ητ m  are respectively the inertia 

matrix and the dynamical (Coriolis and centrifugal) 
tensors which are due to the mass of airship, and 

∑ extτ  is the sum of the different external tensor, 

which involve: 
• Global aerodynamic tensor due to the added mass 
phenomenon plus forces and moments generated by the 
airship body (hull, fins and gondola). 
• Aerostatic tensor describing the forces and 
moments due to the gravity and buoyancy 
• Propulsion tensor due to the vectored thrust. 
 

Lateral dynamics of the airship 
The airship model consists of 12 states, complicating 

the control design. In aeronautics area, a very natural 
simplification consists of decomposing the flight modes 
into: take off, cruise and landing. These tasks can be 
divided into two main modes: longitudinal mode and 
lateral one. In this paper we focus on lateral mode in 
constant altitude. The vectored thrusters and elevators 
are associated to the longitudinal navigation controller 
to hold the altitude and relative velocity navigation 
constant. The rudders allow the airship to navigate in 
the horizontal plan. 

The mathematical model of the trimmed lateral 
dynamics in the local frame is given by 6: 
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these equations correspond to the Lateral, Yaw and roll 
dynamics.  and v are the axial and lateral velocity 

components in local frame.  
eU

  (10) 
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where  are the aerodynamic 

coefficients.  is the apparent mass in the i
xxxxxx LLNNYY  and  , , , , ⋅⋅⋅

⋅⋅⋅

im th direction. 

 are inertia matrix elements.  is the airship mass.iJ m eθ  

is the equilibrium pitch angle. 

 

Figure3 Lateral configuration of airship (top view) 

  are the coordinates of the center of mass in the local 

frame  
ia

mR 6. β  is the skid angle between the relative 

velocity  and  axis into  planerV mx mm yx 5. In the 

absence of wind, this angle appears when the airship 
follows a path with a non zero curvature. For a fixed 
rudder deflection, i.e. corresponding to the circle path, 
this angle takes a constant value when an equilibrium 
between aerodynamic moment, caused by the airship 
body (hull, the vertical fins and control surfaces) motion 
with respect to the surrounding air and the centrifugal 
one is established. This angle takes on small values. 

In general, the airship moves with a low speed. The 

equilibrium between the centrifugal moment around  

axis caused by the rudder deflection and gravitational 
moment is the cause of an insignificantly small Roll 
angle and rate which can be omitted. Taking these 
considerations into account, the model can be simplified 
as: 

mx
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and the kinematic equations are given by: 
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Recapitulating, the model of the lateral dynamics of the 
airship can be written as: 
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The lateral dynamics of the airship have an affine 
structure. In the compact form the dynamics can be 
given by: 
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Some difficulties arise with this model: the first one is 
the underactuation of this system, i.e.  states steered 
by a single input control. The second one is the 
nonholonomic character: non integrable relationship 
between velocities: 

5

  (20) 0)cos()sin( =+++
⋅⋅

ψβψβ yx

this kind of constraints are called Pfaffian Constraints 8. 
 

Time Optimal Extremals 
In this paragraph, let’s introduce reference time-

optimal paths for the system under study, taking into 
account the system dynamics and actuator capabilities. 
Hence, this problem can be formulated as follows: 
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The problem is to find the admissible control u  that 
minimize the time for which the system reaches the 
final state  from the initial one . Without loss of 

generality, and by a simple normalization and shifting 
(if the two bounds of the control domain are not 
symmetric), we can constrain the control to belong to a 
unit interval, i.e. 

fX 0X

11 ≤≤− u . 
To solve this problem, we apply the Pontryagin’s 

Maximum Principle (PMP) to obtain necessary 
conditions for a reference trajectory of a system to be 
time-optimal. The PMP states that: if  is time-

optimal trajectory defined on , and  is the 

corresponding time-optimal reference control, then 
there exists an absolutely continuous vector function 

called the adjoint vector, , such that the 

following conditions are satisfied 
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the vector space inner product. 
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equation: 
X
H
∂
∂
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⋅
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A triple ),,( uX λ  verifying the necessary conditions is 

called an extremal. First, consider the Hamiltonian H, 
functional for the optimal control problem where λ are 
multipliers that adjoin the constraints. 
The Hamiltonian function of the system is given by: 
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and the co-state dynamics are given by: 
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The minimization of the Hamiltonian with respect to the 

control rδ  is obtained by minimizing . The 

control belongs to a unit control domain, then this 
minimization can be achieved by taking for 

r
T Xg δλ )(

rδ  the 

opposite sign of , then: )(XgTλ
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The function , defined along an extremal )()( Xgt Tλφ =
( rX )δλ,,  is called the switching function associated to 

that system. Clearly, the zeroes of this function are 
important for the study of optimal synthesis. If there 
exists a nonempty interval such that )(⋅φ  is identically 

zero, the extremal is singular on that interval. Assume 
now the extremal to be bang, i.e. takes its values in 

 for almost a time  such that { 1,1− } st rδ  is not almost 

everywhere constant on any interval of the form 
] [εε +− ss tt , , 0>ε . is called a switching time for st

rδ  and corresponding state is called switching state. 

The trajectories corresponding to the controls 1±=rδ , 

figure 4 are circles. The fastest way to turn is turning 
with the smallest radius, means that making the rudders 

deflection in one of its limits. i.e. to turn left or right. 
figure5 and 6 shows, β  and r curves when the airship 

pass from a straight line to circle. They take constant 
values when the circle permanent path is attained. 
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Figure 4 Circle path for 1=rδ  
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Singular extremals 

As mentioned above, the singular controls are 
characterized by the fact that )(tφ  is identically zero in 

a nonempty interval. However, the PMP loses its 
discrimination nature, i.e. every controls in U  satisfy 
the necessary conditions. In this case, we need some 
additional conditions. The nullity of )(tφ  in a nonempty 
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interval implies that all its time derivatives are null in 
that interval, i.e. 

   0)()()( 2 ====
⋅⋅⋅

ttt mφφφ L

 the process of derivation is stopped when the control 
appear in the expression of these derivation. For an 
affine system, 

  (28) ( ) ( ) 0,,)(2 =+= r
k XbXat δλλφ

k  is called the order of singular control. Hence, the 
singular control can be expressed as: 

 
),(
),(

λ
λδ

Xb
Xa

r −=  (29) 

Proposition1: 
The singular controls of our system are of the first 

order and are never abnormal. 
 
Proof: 
Let’s derive the switching function )(tφ : 

  (30) 2211)( λλλφ bbgt T +==

  (31) 

2211

)(

)(

⋅⋅

⋅⋅

+=

=

−=

+−=

=

λλ

λ

λ

δλ

λφ

bb

q

gf

ggf

gt

T
x

T
rxx

T

T

 
and 

( )

2211

)(
⋅⋅

+
⋅⋅

=

−+=
⋅⋅

λλ

λδλφ

bb

qxffxqT
rgxqTt

 (32) 

where  denotes the jacobian matrix of the vector V . 

Note that . Nullifying these equations, we find: 
xV

0=xg

 1
2

1
2 λλ

b
b

−=  (33) 

 1
2

1
2

⋅⋅
−= λλ

b
b

 (34) 

replacing in the first and the second equations of the 
system of equations (25), we find: 

 321
2

1
1111

⋅⋅
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−= λλλ a

b
ba  (35) 

 3
1

2
12

1

2
2211 λλλ

b
b

a
b
b

a +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

⋅
 (36) 

proposition2: 
The system of differential equations , has as 

solution 

)36( ),35(
031 == λλ . 

 
Proof: 
From the condition 031 == λλ  we find, 

 ( ) 0sin =−+ γβψ  (37) 

implying 

 πγβψ k=−+  (38) 

with Ζ∈k  
this result represents the necessary condition for the 
existence of the singular control. 

From the equation (38), we can state that, the control 
coefficient  

  (39) )cos(2
1 γβψλ −+−= rx

T Vbgq

is never vanishing. 
So the Hamiltonian becomes: 

  (40) 
0

)cos(),,( 0

=
−++= γβψµλδλ rr VXH

from this, 

 
rr VV
00

)cos(
λ

γβψ
λ

µ ±=
−+

−=  (41) 

we can conclude from equation  that: )41( µ  is never 

equal to zero, because the zero value of µ  implies a 

null adjoint vector λ , this contradicts PMP statements. 
To prove the minimality of the singular controls, we 

must test the generalized convexity condition often 
called, strengthened Legendre -Clebsh condition given 
by 3,10: 

 ( ) 01 2

2
≥⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

− k

k
k

dt
d

u
φ

 (42) 

k  is the order of  singular control. For our system: 

 ( ) )cos(1 2
12

2
γβψµφ

δ
−+−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

− r
r

Vb
dt
d

 (43) 

from the equation (41): 

  (44) 0)cos( 0
2
1

2
1 ≥=−+− λγβψµ bVb r

which is true, i.e. 0λ  is positive by definition. 
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Hence, the singular control, and from equation (32) can 
be given by: 

 

( )

( )

( )( )
1

1211

12
1

2
11

1

)tan(1

b
raa

a
b
ba

gq
qffq

x
T

xx
T

r

++
−

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

−
−=

β

γβψ

λ
λ

δ

 (45) 

from the existence condition of the singular control, i.e. 
πγβψ k=−+ , the control can be reduced to: 

 
( )( )

1

1211 1
b

raa
r

++
−=

βδ  (46) 

such that 1<rδ  

 
Discussion of the singular control 

Once the singular control is determined, we illustrate 
the geometric shape of the reference trajectory of the 
airship under this singular control. From the singular 
control necessary condition, γβψ −+  is constant, and 
γ  is constant too, then βψ +  is constant. This implies 

that the angle between the relative velocity  and the rV
x  reference axis is constant. Thus the singular 
trajectory is a straight line. We can find the same result 
by applying the control defined below in the dynamics 
of β : 

  (47) 

0

0

=+

=+
⋅⋅

⋅

ψβ

β r

implying a non variation of ψβ +  angle, the reference 

trajectory is thus a line. Transition from a curved path to 
the line requires the application of the singular control 
which grows monotonously, figure7. This explosion of 
control is due to the non acceptance of the 
discontinuities in path curvature by the airship 
dynamics. For this reason we want to smooth this 
curvature by optimizing the transition time between a 
non zero curvature trajectory and a straight line. When 
we try to connect two aligned configuration the optimal 
path is obviously a straight line, i.e. 0== rβ , which 

correspond to .,this control is embedded in 

. 

0* =rδ
)46(
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Figure7 singular control  *
rδ

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5
x 10

8

t

β(
t)

Figure 8 skid angle response to  *
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Figure10 airship configuration on circle line 
transition. 

 
Optimal transition of a non null curvature path 

to a straight line 
We now consider the issues pertaining to the switching 
between the non zero curvature path and a straight line. 
We have already characterized the forms of the optimal 
state and control trajectories in each mode separately. 
Therefore, we need to further specify the time interval 
corresponding to the mode switching and the parameters 
that determine when and for how long the singular 
control lasts. We proceed to address both issues using a 
continuity argument.We look for the fastest way for the 
airship to move from non null curvature paths to a 
straight line in optimal time. The line is characterized 
by zero values of β  and r , and the non null curvature 

paths are characterized by non zero values of β  and r . 

Let’s use the dynamics of β  and r  for achieving this 

objective. In optimal control literature, the following 
theorem is demonstrated.  
Theorem: 

For any linear normal system the optimal control is 
of bang-bang type 1.  

 
The normality condition means that the system is 
controllable with respect to each of its control inputs. 
The determinant of the controllability matrix is: 

  (48) 2
212112221

2
121 )( baaabbba −−+

The system under consideration is normal. Let’s find the 
switching surface allowing the system to intersect the 
origin, starting from any initial condition within this 
surface, and under a specific control, i.e. 1±=rδ . The 

dynamics of the Yaw rate and the skid angle are 
asymptotically stable. To simplify the calculus, a 
separation of dynamics is performed by state matrix 
diagonalization, by means of linear state space variable 
transformation. Let 

  (49) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

r
T

z
z β1

2

1

where is a T 22×  matrix formed by the eigenvectors 
corresponding to the system eigenvalues. The resultant 
diagonalized dynamics are given by: 

  (50) 

rz

rz

bzz

bzz

δλ

δλ

2222

1111

+=

+=
⋅

⋅

The corresponding solutions of this system are given 
by: 

 

( )

( )
2

2202

2
22

1

1101

1
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2

1

)(

)(

λ
λδ

λ
δ

λ
λδ

λ
δ

λ

λ

zbe
btz

zbe
btz

rz
t

r
z

rz
t

r
z

+
+−=

+
+−=

 (51) 

where  and  are the initial conditions. To find the 

switching surface we look for the initial conditions from 
which the system dynamic trajectory cross the origin 
under the control

10z 20z

1±=rδ . The target point 

is
( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
0
0

2

1

c

c

tz
tz

. However, the cross time with the 

origin  is easily calculated from the system (51): ct

 
1

1101

1ln

λ
λδ

δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
zb

b

t rz

rz

c  (52) 

and  

 
2

2202

2ln

λ
λδ

δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
zb

b

t rz
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c  (53) 

equalizing times and solving the resulting equation for 
 we find: 10z
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2202
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2202

2

10

1

λ
λ

λ
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λδ
δ

λδ
δδ
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⎠

⎞
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⎝
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⎟
⎟
⎟
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⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
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⎝
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+

−

=
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b

z
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rz
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r

 (54) 

this equation defines the switching surface in  and  

coordinates corresponding to 
1z 2z

1±=rδ , figure11 and 12, 

in figure 13, we show the whole switching surface. 
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Figure13 Total switching surface 

 
figure 14 shows the transition trajectories when 
applying a bang-bang control. The resultant trajectories 
have the hysteresis cycle form. 

The algorithm of the optimal transition is based on 
the detection of the cross points of the bang-bang 
trajectories with the switching surface, the idea is to 
compare the horizontal distance of the system state 
point  from the switching surface by replacing 

the  in equation (54) and switching when the 

condition 

( 21, zz )

2z
ε<− 101 zz  is hold. In this case the control 

switch to the other bang. The same algorithm is applied 
to detect the intersection with the origin, when is the 
case, the control is hold to zero. Figure 15 show the 

resulting time-optimal transition control  from a 

circle to a straight line. Figure 16 illustrate a 

comparison of 

∗
rδ

β  response under application of  and ∗
rδ

0=rδ . We see that the β  response to  reaches the 

zero very fast. 

∗
rδ

In figure 17 we show the configuration of the airship on 

the resultant trajectory by application of  ∗rδ

Figure14 State space optimal transition from circle 
to straight line 
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Conclusion and future work 

In this paper, a characterization of the time-optimal 
reference paths for lateral navigation of the airship is 
established, the Maximum Principle of Pontryagin gives 
a local information of the optimality of the paths. In the 
future work, this study should be completed by a 
geometric reasoning for providing a way to select inside 
of this family, the optimal path to link any two 
configurations in lateral plan. 
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