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Abstract : The subject of this paper is motion generation 
of three-wheeled vehicles, taking into account dynamics 
and motors’ current and slew rate constraints. Dynamics 
are described by a nonlinear nonholonomic model. 
Optimal velocity is determined along a specified path. 
The curvature of the path is known. As an application of 
the proposed algorithm, velocity of the tricycle can be 
approximated by simple functions of the curvature. 

I. Introduction. 
While a mobile robot travels at a relatively low speed, 
controlling the robot with only a kinematics model may 
work. However, as mobile robots are designed to travel at 
higher speeds, dynamic modeling of these vehicles 
becomes increasingly important. In this paper, dynamics 
are integrated into motion generation, assuming that the 
path curvature is known. A path is specified by its 
geometry F(s) E’%’, s E [O,A], and its motion trajectory 
through a function s(t), t E [0, TI, where A is the length 
of the path and T is the total motion time. While 
extensive work has focused on computing the geometric 
path [3-91, little attention has been given to select the 
optimal motion. For the temporal part of the trajectory, 
currently most controllers use the trapezoidal speed 
profile. This method is suitable only for tracking straight 
lines. In this paper, optimal velocity is determined along 
a specified path with a known curvature, such as a 
straight line, a circle arc, a clothoid or a cubic spiral. 
Other paths could also be used. 

. 

11. Modeling. 
2.1. Description of the system. 
The mobile robot under study (see fig. 1) is made up of a 
rigid cart, equipped with three non deformable identical 
wheels, moving on a horizontal plane, with a linear 
velocity v. R, = (0, , x, , y o }  is the global reference 

kame while R, = (0 , x, , y, } represents the 

mobile frame. Ox,,, is the axis of symmetry of the vehicle 
while 0 is the mid-point of the rear axle. The following 
distances are defined as follows : L is the distance from 0 
to the center of the steering wheel while ! represents the 
distance from 0 to the center of any of the rear wheels. 
We assume that during the motion, the plane of each 
wheel remains vertical and the wheel rotates about its 
horizontal axle whose orientation with respect to the cart 
is fixed for the two rear wheels and varying for the front 
wheel: the steering wheel. The contact of each wheel with 
the ground is supposed to be a point satisfying both 
conditions of pure rolling and non-slipping along the 
motion. 
The configuration of the mobile robot is fully described 
by the following vectors [l, 21. 

Posture coordinates 5 = (X  y 0) for the 
T 

position in the plane. 
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Orientation coordinates fl for the orientation angle of 
the steering wheel. 

2.2. Dynamics of a rear wheel drive tricycle. 
Two motors are controlling this conventionally driven 
vehicle: the first motor controls the average velocity of 
both rear wheels while the second motor controls the 
steering angle fl. It is a rear wheel drive tricycle. The 
torques can be written as [l]: 

1 sin 1 r, =-(a, tan2 P+a,)b+- a, v j~ + - f, v 
ncos3 p n (1) 

where the ai‘s are constant values depending on the 
geometric and inertial parameters of the system. 

with 
M = m ,  +3m, 

I = I ,  + m,d2 + 31, + 2mwe2 + mwL2 
(3) 

where mp is the mass of the platform, m, is the mass of 
each wheel, 1, is the inertia moment of the platform 
around its center of mass, I, is the inertia moment of one 
wheel around one of its diameters, d is the distance of the 
center of mass of the platform P to the mid-point of the 
rear axle 0, K is the electromechanical constant of the 
motor and n represents the gear ratio. 
Electrical motors are very popular for driving tricycles. 
We focus on DC motors that are often in use. For a 
permanent magnet DC motor, the torque r is proportional 
to the armature current J. Thus actuator dynamics can be 
characterized in a matrix form as : 
r = K.J  

dJ 
dt 

U = L, -+ R.J + K ~ - ’ ( v  W Y  (4) 

dt 
L,, R and K are 2*2 regular diagonal matrices 
representing respectively the inductance, resistance and 
torque constants of the actuators. U is the motor voltage 
vector. We assume that the transmission from the motors 
to the mechanism to be perfectly rigid, i.e the 
transmission does not suffer from backlash or flexibility. 
We suppose that the inductance of the motors can be 
neglected . If we define the state-space variable vector X 

as x = ( x  y e /I v w y  and the 
control inputs as the currents produced by the system’s 
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actuators (J1 
formulated as an affine nonlinear system with drift [l]: 

J ,  >’, then the system can be 

x = f o ( X > + f 1 ( X ) J ,  + f 2 ( X ) J 2  (5) 

I x, cos x3 \ 
with 

x5x6 I l- 0 

a, sin X ,  
cos3 x&, tanZ x, + a z )  

1 

a, tan’ X ,  + U ,  

and 

f*(X)= 0 0 0 0 0 Ll’ ( 1, 
(8) 

On a given path, these equations of motion (5)-(8) can be 
written as : 

K represents the curvature and K’ the derivative of the 
curvature versus the curvilinear abscissa s. 
The current can thus be written as: 

J ,  = 4(s> ;+ 4 ( s ,  v) (11) 
with 
A, ( s )  = u , l ’ K 2 ( s ) + u 2  

A , ( s , v )  = u,C’K(s)K’(s)v‘ 
These equations and parameters listed above describe 
idealized dynamics of the system. Other effects can be 
identified which do not appear in eqs (1-12), including 
road coefficient for friction, aerodynamic forces, sliding 
factors, uneven road.. .. 

(12) 

III. Motion generation 
3.1 Problem formulation. 
Designing reference trajectories is essentially an 
optimization problem. The minimum time trajectory 
generation has been solved in a number of ways, 
following the usual approach, i.e. taking as feasible limits 
purely kinematics constraints on vehicle velocity and 
acceleration. This bound must represent the global least 
upper bound of all operating accelerations so as to enable 
the vehicle to move under any operating conditions. This 
implies that the full capabilities of the vehicle cannot be 
utilized if the conventional approach is taken. In this 
paper, the case of more realistic constraints is 
investigated: current and slew rate constraints. In addition 
to current saturation, the robot also exhibits velocity 
saturation. This effect is due to back- EMF generation of 
the motors, which at high velocity, approaches the power 

supply voltage of the amplifier. The inclusion of slew rate 
limitations smoothes the change of rate of the current. 
The general problem of minimum time motion may be 
formulated as follows: 
Min tf 
s.t. eq. (9) (13) 

V,, is the maximum velocity, I,, represent the 
maximum of the currents and dI,, the maximal slew 
rates. The boundary values are given by: 
s(0) = 0; v (0 )  = O;s(T) = O;v(T) = 0. 
rmX represent the maximum of the torques provided by 

(14) 

themotors. r,, = K.lmx (15) 
Following [3, 91, the constraints on the currents or 
equivalently the torques can be transformed into 
constraints on the acceleration, in the phase-plane: 

The maximum admissible velocity value is obtained 

when Smx = sfin. (19) 
This defines Vm,(S) taking into account the 
mechanical limitation on velocity. Resolution of these 
equations uses forward and backward integration. These 
equations allow to construct an infeasible region in the 
state space (s, v), region for which the appropriate inputs 
for keeping the system on the path are not available. 
Equations (16)-(19) are used as an analysis tool, only, 
verifying a posteriori that the calculated trajectories are 
admissible. 

The next paragraph proposes a practical method of 
resolution when the model is supposed to be perfect. 

3.2 Problem resolution 
According to the Pontryagin maximum principle, a time 
optimal solution exists in which the input switches 
exclusively between the maximum and minimum, 
possibly zero during a finite interval (when the velocity is 
saturated). The terminal state requirement is function of 
the switching interval lengths. 
If we suppose that the acceleration is constant onto an 
interval, we can use the following approximation 

2 2  
‘ k  - ‘t-1 6 = St - St-* (20) ak =- 

26 
In the forward integration, using equations 5 and 10 
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The actual velocity depends on the past velocity, the path 
curvature and its derivative, the motor current and the 
mobile robot parameters. 
When the equality of velocities (eq 21) computed with 
forward and backward integration is obtained, this is 
considered as the switching time. Accelerations are 
obtained with eq. 9. 
For each s, the path curvature and its derivative are 
known. The characteristic of this motion generation 
technique is that the curvilinear abscissa s is the variable, 
while the time t is a function of s. 
Other sub-optimal methods can be used such as 
polynomial functions, sinusoidal curves.. . to provide a 
higher degree of continuity. 

IV. Numerical examples 
4.1. Robot characteristics. 
Many simulations were performed with a mobile robot 
that characteristics are: 
I,=5.5Kgm2; IW=I~,=O.24Kgm2; m,,=lOKg; mw=lKg; 
r=O.lm; 1=0.2m; d=OSm; Lslm. 
Both motors are identical: 
K=lSNm/A; n=l; 1,,,=15A; dIm=15000A; v,,=4m/s. 

4.2. Simulation results. 
The length of the path is 4m. The initial conditions are 
x(O)=y(O)=e(O)=O. The algorithm stops when the 
precision is less than 0.01. The simulations are performed 
using MATLAB software. 
In this paper, four examples are presented 
For the straight line (fig. 2), K(s) =O; 
For the circle (fig. 3), K(s)=l; 
For the clothoid (fig. 4), K(s)= s; 
For the cubic spiral (fig. 5) ,  K(s)=s* 
Each figure represents the velocity, acceleration, current, 
orientation, curvature and evolution of the time with 
respect to s, then the path (x-y) is presented and finally 
current versus time t. 
Although it may seem that the slope of the current is 
infinite, it is not. The slew rate limitation is considered. 

4.3. Application: Approximation of the velocity 
as a simple function of the curvature. 

As known from everyday experience, velocity depends 
on the curvature of the road. Higher is the curvature, 
lower is the velocity. In this paragraph, three different 
kind of functions are compared with the solution of 
integration of the differential equations (9). The 
following functions are used: 
v = aexp(- /3lK(s)l)CA - s) (22) 

where a a n d  /3 are parameters depending on the 
characteristics of the path and the vehicle. 
Figures 6 and 7 show the applicability of these 
approximation when the velocity obtained after resolution 

of the differential equations and the three approximations 
(22), (23), (24) are plotted versus curvature. 
These approximations can be generalized in the path 
generation and the path tracking of any tricycle. 

V. Conclusions 
In specifying a trajectory, the physical limits of the 
system must be considered. This paper presents a method 
for generating smooth motion for robotic vehicles on a 
given path when kinematics and dynamics constraints are 
taken into account. We are interested in finding a 
trajectory that is optimal in motion time subject to 
velocity and current constraints. 
For motors, the voltage is limited. If the inductance of the 
motors cannot be neglected, then combining motor 
equations with dynamics leads to a set of third order 
equations. Our future work will introduce voltage 
constraints into motion generation, with non negligible 
inductance. 
Although DC motors have been considered, other 
actuators such as AC machines present the same kind of 
constraints on both the current and voltage. 
This motion generation algorithm is applied to a rear 
wheel drive tricycle. It can be easily generated to a front 
wheel drive, a differentially steered or any other kind of 
mobile robot. 
For kinematics models, the stabilization problem has 
essentially been solved with two types of control laws: 

time-varying piecewise continuous control. 
Time-varying continuous control. 

An analogous study must be made for vehicles 
represented by their kino-dynamics models. 
Interesting applications of Hamiltonian methods, such as 
the energy-momentum method (for determining nonlinear 
stability) and bifurcation of Hamiltonian systems with 
symmetry (for uncovering non trivial branches of new 
solutions when system parameters such as friction 
coefficients are varied) are also another perspective. 
Other studies can be conducted about sliding, 
deformability or flexibility of the wheels. 
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