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Abstract:
This work presents a stability analysis of the computed
torque technique, using the perturbation theory.
Using this analysis a simple nonlinear gain function is
proposed for the PID regulators.

I- INTRODUCTION

In this paper, we study the stabilizability problem for robot
manipulator control. First, in [4] constant gains were used to
stabilize this system . [2] proposed a stability analysis using
continuous gains varying linearly and [5] studied constant
and variable PD non-linear regulator gains. We finally
mention Lie algebra and Lyapunov methods.

Our primary objective in the work described here is to
propose a controller that has a simple structure, is easily
implemented and is capable of path following for
manipulators.

Notations:l.Irepresents the vectorial euclidean norm,
H() is the associated matricial norm, (.,.) is the scalar
product in R™ and I is the identity matrix.

II- PROBLEM FORMULATION

The dynamics of a multilink articulated robot manipulator can

be characterised by a set of nonlinear and coupled second-

order differential equation : I'=D(q) q" + h(q,q") (1)

where T" are n x 1 external applied torques for joint actuators, q, q' and
q" are respectively n x 1 joint positions, velocities and accelerations.
h(q.,q") is the gravitational, Coriolis and Centrifugal force vector and
D(q) is the positive definite n x n inertia matrix.

To control the manipulator, the following control law is

proposed : I= 19+ AT 2
where T D(qd) q"d + h(qd,qd) 3)
and

Ar=D(@q% [Kyv(®) (@4 -q) + Kp(t) (@) +
t

+K1() _f(q"(r)-q(r)) a1 @
0

where D and b are estimates of D and h respectively, Ky, Kp and K1
are n x n diagonal gain matrices with Ky;j , Kpj and K[j on the
diagonals. Since one does not have access to the exact inverse
dynamics, the linearization and the decoupling will not be exact.

The ith joint has as closed loop dynamics:

(@) + Ky(®) x"(q,t) + Kp(t) X'(q,0) + Ki(t) x(q,t) =
J(tg9.q9'.9") x(0)=x'(0)=0 &)

with  x(q) = I(qd(r) - q(v)) dt and
G .

X(ta.q.a”) =D 1@ [ @D - D) q" + h(gda9)-b(aa)(6)

As :D(qd) is positive definite, its inverse matrix exists.

The functions D, D, b and h are assumed to be C! so they are

uniformly bounded when q,q' and q" are bounded, J is also a

¢! funerion uniformly bounded with respect to its arguments;
SO
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I - EXISTENCE AND STABILITY ANALYSIS
The aim of this paragraph is to present a stability analysis of
the computed torque technique, giving conditions on the gain
parameters.
Theorem : If the gain matrices fulfill the following
conditions:
H1) Kp(t), Ky(t) and Kj(t) locally integrable
*) Each coefficient of  Kp(t), Ky(t) and K[(t) is Borel
measurable on Cp, T

t

*¥)if ISup (IKploIKy(0lg, IK(tlp ) dt <00
0

I=[0,7] t e [0,T] @)
H2) Kp(t) is positive definite, uniformly bounded, and its
coefficients are derivable,

Supte It ( IKp(lg )<o0and  supreIn( IKy(tlg )<00(8)
H3) There exists a constant ¥ such that:

va Kpj -K]j + K'pj"Y j=1,...,n )
. supM(tq.9'g” ) _ . .
H4)Ix" ()l + sup (1K (0lg) <min Linf (IKp(0lp ). r
(10)

We have then the following results:
i) Existence and unicity of the solution: The solution x(t)
exists and is unique on C,T. a compact subset on R"x[0,T]
ii) Stability of the solution in the neighbourhood of 0 :
viel, kol<r

iii) Asymptotic behaviour with respect to Kp.

The solution x(t) of problem (5) is exponentially stable in
the neighbourhood of 0.

Proof : The proof of this theorem may be found in [1].

(11)

This theorem allows us to analyze the effects of every
component appearing in the differential equation on the
stability and the asymptotic behaviour of the error e(t). In
fact, it shows that if the initial error le(0)} is small enough,
then there exists a minimal nonlinear gain such that if
ﬂKp(t)ﬂ is greater than this gain, then le(t)l stays inside the
sphere B(0,r). The reason is that a constant gain may be
turned with respect to the most unfavourable case, while a
non linear gain can be designed so as to vary with the robot
configuration, and assume large values only when it is really
needed. Assumptions H1 and H2 of Theorem have more
qualitative value than quantitative one. For this reason, we
try to determine nonlinear gains functions a priori, starting
from practical data and then to verify that they are coherent
with the results of the analysis of Theorem. When Coriolis
and centrifugal torques are not exactly modelled in the
compensating term, their influence increases with the robot
velocity. Increasing the Kyj(t) gain simultaneously with

q'dj(t) tends to reduce the related disturbances. We can

nrannca thic firct law »
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Kyjt) =lq ol Koy = Loj o% I, (2

where o > an such that
sup( 1J(t.q.9’,q" ) 1
sup ( |q'dj(l)|) inf ( |qdj(t)|)

al; = |x"j(0)l +

and Kt = Kyj(t) Kpj(t) + K'pj(t) +y (13)
or this second law :
Kyj(t) =|e'j(t) L. Kpj(t) = lo ej(t)l (14)

and Kf; is also given by eqn (13).

V - SIMULATION RESULTS

Many numerical simulations to the first three rotational
joints of the robotic manipulator MA23 are illustrated in this
section to test the efficiency of the proposed control scheme.
The initial and final positions are:

q0= (0,0,0)rd ; qgga1= (0.5,0.5,0.5)rd

The velocity and acceleration constraints are:

Qmax =(LLDtds  q"max = (3.3,3) rd/s?

The nominal mass of the third axis and the load (m3=4Kg) is
overestimated by 10% with respect to the assigned mass
(m3=4.4Kg). The nominal values were used in the
computation of the nonlinear desired feedback. The assigned
values were used in the computational implementation of the
robot arm.

The Quintic polynomial was chosen as a desired trajectory :
qdj(t) = agj+alj t+ay; 2+ a3; B+ a4; t4+a5j o]

with null initial and final velocities and accelerations.

The following laws were chosen:

a - TEST 1: gains are given by eqns (12)-(13) , [o =1 y=1]
b - TEST 2 : gains are given by eqns §)i3 [a=107=1]
Figures 1 and 2 show the evolution of the first joint PID
gains respectively for Tests 1 to 2.

The first and most important simulation result is that the
nonlinear gains although very small in regard to the constant
gains are sufficient to stabilize the system. This shows the
effectiveness of the small gain theorem. Furthermore, the
nonlinear control laws perform better when the desired
trajectory is very regular. The quintic polynomial gives
better results than the third order onme. Concerning the
robustness, several other simulations were performed that
show that the parameter & (see equations 12 and 14) has to be
increased to counteract the effect of parameter uncertainties.
We also remark that the first law (eqn 12) gives better results
than the second law (eqn 14).

VI - CONCLUSIONS

Manipulator's control system based on computer torque
technique incorporates a model of the manipulator dynamics.
The nominal torque, computed using this mathematical
model, does not reflect the effects of unknown loadings and
uncertainty in modelling the parameters. An approach is
presented in this paper which takes care of this problem. We
propose a stability analysis of the computed torque technique
using a PID regulator. Then, using the proposed theorem, we
employ PID regulators such that the system is asymptotically
stable. A method for designing robust controllers that
provide guaranteed stability and performance to system with
model uncertainties has been presented. As shown by the
application of the method to several examples, it secems that
the design does not require an important control effort and
improves closed-loop system performance.

Simulation results showed that the use of nonlinear gains is
quite effective. Only two laws were presented. However, other
choices can be made.
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