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Abstract :  
This work presents a stability analysis of the computed 

torque technique, using the perturbation theory. 
Using this analysis a simple nonlinear gain function is 
proposed for the PID regulators. 

I- INTRODUCTION 
In this paper, we study the stabilizability problem for robot 
manipulator control. First, in [4] constant gains were used to 
stabilize this system . 121 proposed a stability analysis using 
continuous gains varying linearly and [5] studied constant 
and variable PD non-linear regulator gains. We finally 
mention Lie algebra and Lyapunov methods. 
Our primary objective in the work described here is to 
propose a controller that has a simple structure, is easily 
implemented and is capable of path following for 
manipulators. 
Notations:/I.IIrepresents the vectorial euclidean norm, 
!.llo is the associated matricial norm, (...) is the scalar 
product in IRn and I is the identity matrix. 

11- PROBLEM FORMULATION 
The dynamics of a multilink articulated robot manipulator can 
be characterised by a set of nonlinear and coupled second- 

where r are n x 1 extemal applied torques for joint actuators, q, q' and 
q" are respectively n x 1 joint positions, velocities and accelerations. 
h(q,q') is the gravitational, Coriolis and Centrifugal force vector and 
D(q) is the positive definite n x n inertia matrix. 
To control the manipulator, the following control law is 

order differential equation : r= D(q) q" + h(q,q') (1) 

proposed : r= ycl+~r (2) 
where I.d= D(qd) q"d + h(qd,qd) (3) 
and Ar= Wqd) [Kdt) (qd 4') + Kp(t) (qdq) + 

t 

+ KI(~) (qd(f) - q(W d ~ l  (4) 
0 

where l 3  and h are estimates of D and h respectively, KV, Kp and KI 
are n x n diagonal gain matrices with Kvj , Kpj and K I ~  on the 
diagonals. Since one does not have access to the exact inverse 
dynamics, the linearization and the decoupling will not be exact. 
The ith joint has as closed loop dynamics: 
x"'(q,t) + Kv(t) x"(q,t) + Kp(t) x'(q,t) + 
J(t,q.q',q") x(0) = x'(0) = 0 ( 5 )  

KI(t) x(qJ) = 

t 

with x(q,t) = (qd(%) - q(x)) d7 and 

J(Mq',q") =D-'(qd) [ W q d )  - Wq)) 9" + h(qdts'd)-h(¶,¶'11(6) 
As D(qd) is positive definite, its inverse matrix exists. 
The functions D. D, h. and h are assumed to be C1 so they are 
uniformly bounded when q,q' and q" are bounded, J is also a 
C1 functian uniformly bounded with respect to its arguments; 

0 
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111 - EXISTENCE AND STABILITY ANALYSIS 
The aim of this paragraph is to present a stability analysis of 
the computed torque technique, giving conditions on the gain 
parameters. 
Theorem : If the gain matrices fulfill the fullowing 
conditions: 
H1) Kp(t), Kv(t) and KI(t) locally integrable 
*) Each coefficient of Kp(t). Kv(t) and KI(t) is Bore1 
measurable on cr,T 

t 

**) i f j sup  ( nKp(t)nO,nKv(t)nO, iKI(t)io dt 
0 

I,= [O,.rI t E [O,Tl (7) 

H2) Kp(t) is positive definite, uniformly bounded, and its 
coefficients are derivable, 

H3) There exists a constant 7 such that: 
SuPtEI, ( lKp(t)Ho )<Wand supt€EI.r( k ( t ) l o  )<ow) 
Kvj Kpj -KIj + K'pj=Y j=l ,  ..., n (9) 

(10) 
We have then the following results: 
i) Existence and unicity of the solution: The solution x(t) 
exists and is unique on cr,T: a compact subset on Rnx[O,T] 
ii) Stability of the solution in the neighbourhood of 0 : 

iii) Asymptotic behaviour with respect to Kp. 
The solution x(t) of problem ( 5 )  is exponentially stable in 
the neighbourhood of 0. 
Proof : The proof of this theorem may be found in [l]. 

This theorem allows us to analyze the effects of every 
component appearing in the differential equation on the 
stability and the asymptotic behaviour of the error e(t). In 
fact, it shows that if the initial error le(0)l is small enough, 
then there exists a minimal nonlinear gain such that if 
aKp(t)8 is greater than this gain, then le(t)l stays inside the 
sphere B(0,r). The reason is that a constant gain may be 
turned with respect to the most unfavourable case, while a 
non linear gain can be designed so as to vary with the robot 
configuration, and assume large values only when it is really 
needed. Assumptions H1 and H2 of Theorem have more 
qualitative value than quantitative one. For this reason, we 
try to determine nonlinear gains functions a priori, starting 
from practical data and then to verify that they are coherent 
with the results of the analysis of Theorem. When Coriolis 
and centrifugal torques are not exactly modelled in the 
compensating term, their influence increases with the robot 
velocity. Increasing the Kvj(t) gain simultaneously with 
qVdj(t) tends to reduce the related disturbances. We can 

V t E  I,, Xx(t>! < r (11) 
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(12) 

and KIj(t) = Kvj(t) Kpj(t) + K'pj(C) UY (13) 

Kvj(t) =!e'j(t) I,. Kpj(t) = Iaj e,(t)l 
or this second law : 

and K I ~  is also given by eqn (13). 

Many numerical simulations to the first three rotational 
joints of the robotic manipulator MA23 are illustrated in this 
section to test the efficiency of the proposed control scheme. 
The initial and final positions are: 
qo= (O,O,O)rd ; qgoal= (O.S,O.S,O.S)rd 
Tbe velocity and acceleration constraints care: 

The nominal mass of the third axis and the load (m34Kg) is 
overestimated by 10% with respect to the assigned mass 
(m3=4.4Kg). The nominal values were used in the 
computation of the nonlinear desired feedback. The assigned 
values were used in the computational implementation of the 
robot arm. 
The Quintic polynomial was chosen as a desired trajectory : 
qdj(t) = q j + a l j  t + a2j t2+ a3j t3+ q j  t'+asj ts 

with null initial and final velocities and accelerations. 
The following laws were chosen: 
a - TEST 1 : gains are given by eqns (12)-(13) , [a =1 r=1] 
b -TEST 2 : gains are given by eqns flp [ a =lo 7 =  1 ] 
Figures 1 and 2 show the evolution of the f i t  joint PID 
gains respectively for Tests 1 to 2. 
The first and most important simulation result is that the 
nonlinear gains although very mall in regard to the constant 
gains are sufficient to stabilize the system. This shows the 
effectiveness of the small gain theorem. Furthermore. the 
nonlinear control laws perform better when the desired 
trajectory is very regular. The quintic polynomial gives 
better results than the third order one. Concerning the 
robustness, several other simulations were performed that 
show that the parameter a (see equations 12 and 14) has to be 
increased to counteract the effect of parameter uncertainties. 
w e  also remark that the first law (eqn 12) gives better mal t s  
than the second law (eqn 14). 

(14) 

V - SIMULATION RESULTS 

q'max = (1.1.1) rdls q"max = ( 3 ~ 3 1  d s 2  

VI - CONCLUSIONS 
Manipulator's control system based on computer torque 
technique incorporates a model of the manipulator dynamics. 
The nominal torque, computed using this mathematical 
model, does not reflect the effects of unknown loadings and 
uncertainty in modelling the parameters. An approach is 
presented in this paper which takes care of this problem. We 
propose a stability analysis of the computed torque technique 
using a PID regulator. Then, using the proposed theorem. we 
employ PID regulators such that the system is asymptotically 
stable. A method for designing robust controllers that 
provide guaranteed stability and perfosmance to system with 
model uncertainties has been presented. As shown by the , 
application of the method to several examples, it seems that 
the design does not require an important control effort and 
improves closed-loop system performance. 
Simulation results showed that the use of nonlinear gains is 
quite effective. Only two laws were psented. However, other 
choices can be made. 
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