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Abstract. : This work presents a stability and sensitivity 
analysis of the computed torque technique applied to robotic 
control, using the regular perturbation theory. Perturbation 
theory is a general tool for multiple-time, scale system and 
robustness studies. The proposed theorem considers the 
development of sufficient conditions for the robust 
stabilization of a manipulator. Xn relation with stability, a 
sensitivity analysis to gain variations is proposed. 

I- INTRODUCTION 
In this paper, we study the stabilizability problem for 

robot manipulator control. This system is a smooth 
nonlinear one that is affine in the control: 
X' = F(x) + Xii=lP r i  Gi(x)) 
andF(0) = 0; xER"* r E R m  (1) 
x is the space vector, r the control vector. 

First, constant gains were used to stabilize this system 
[9]. Then, piecewise linear feedback and other discontinuous 
types of feedback have been proposed in [lo] to regulate 
non linear systems. It was proved that if the system is 
analytic and completely controllable, then there exists a 
piecewise analytic stabilizing feedback. [l] showed that 
there exists an ordinary stabilizing feedback that is 
continuous for every x#O in a neighbourhood of 0 ER". 
[3] proposed a stability analysis using continuus PD and 
PID gains varying linearly. [lo] studied constant and 
variable PD non-linear regulator gains. We finally mention 
[8] who employed Lie algebra and [12] who used the 
Lyapunov method. 

Although, this work is based on [lo], the proposed 
stability analysis is quite different. Samson et al studied a 
PD regulator, we use a PID one. Furthermore, the stability 
theorem and the proof are different and the sensitivity 
analysis is original. 

The remainder of this paper is organized as follows. The 
mathematical model is given in the following section and 
the computed torque technique in Section 111. Sections IV 
and V present respectively the stability and sensitivity 
analysis, consisting in two original theorems, Finally, 
Appendices A and B present the proofs of the two 
mentioned theorems. 

Notations: kepresents the vectorial euclidean norm, 
I.Uo is the associated matricial norm, (.,.I is the scalar 
product in Rn and I is the identity ma&. 

II - MATHEMATICAL MODEL 
The dynamics of a multilink articulated robot 

manipulator. excluding the actuator dynamics, gear friction 
and backlash, can be chamcte.rised by a set of n o n l i i  and 
coupled second-order differential equation : 

where n is the number of degrees of freedom, r are n x 1 
external applied torques for joint actuators, q, q' and q" are 
respectively n x 1 joint angles, velocities and accelerations, 
h(q,q') is the gravitational, Coriolis and Centrifugal force 
vector and D(q) is an n x n inertia matrix. 

r= as) q" + h(q*q? (2) 

111 - COMPUTED TORQUE TECHNIQUE 
Industry generally uses classical techniques like PD or 

PID controllers with constant parameters to operate the 
robots that it employs. However, the litterature [3,5,6] has 
been investigating how to increase the speed and tracking 
accuracy of the manipulators.The computed torque 
technique sets the basis upon which much of the present 
literature on robotic trajectory control is based. In this 
method we compute the necessary torques based on ethe 
inertial dynamics of the manipulator. In the control 
problem, preceeding the robot dynamics, an inverse model 
is incorporated. This inverse model calculates the torques 
needed for the reference trajectory. A great advantage is that 
the whole system (inverse model+robot) has an almost 
linear behavior. 

To control the manipulator, the following control law 
is proposed: 

where 

and 

r= PhAr (3) 

I.d= a<&t)> q"d + m%>.qtd<t>> (4) 
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Ar= Wq%) Kdt)  cqd<t> q" + Kp(t) (qd(t)-s(t)) + 
t 

+ KIO) J <qd(z> - q(z)) dT1 (3 
0 

where I 3  and h are estimates of D and h respectively, 
KV(t), Kp(t) and KI(t) are n x n diagonal gain matrices 
with Kvj(t) , Kpj (t) and KIj (t) on the diagonals (i=l,..,n), 
t denotes the time, t E [ O . I .  T being the predicted arrival 
time. The desired trajectory (qd,q'd) of the manipulator is 
given by the trajectory planning system [5,6]. The PID 
controller is applied in order to obtain some sensitivity 
improvements. 

IV - EXISTENCE AND STABILITY ANALYSIS 
4 - 1 Problem formulation 
Since one does not have access to the exact inverse 

dynamics, the linearization and the decoupling will not be 
exact. This is manifested by uncertain feedback terms that 
may be handled using multivariable robust control 
techniques. 

The ith joint has as closed loop dynamics: 
x"'(q.t) + Kv(t) x"(q.t) + Kp(t) x'(q,t) + KI(t) x(q.t) = 
R(ttq,q',q") (9 
with 

t 

x(q4 = J (nd(.r) - q(.r)) d.r 
0 

x") =e(cl.tk q%) - q(t) 
x'") =e'(q&= q%) - q'(t) 
x'") =e"(q.tk q"%) - q"(t) 

a-l(~t))[(a(~t))-D(s(t)))s"(t) + h(~t).q~t))-h(s(t),q'(t))l 

(7)  
and x(q,O) = x'(q,O) = 0 
R(t,qs's") = 

(8) 
where x(q,t)=(xl(q,t), ...., xn(q,t) )T n dimensional vector 

The functions a(qd), D(q), h(qd,qed) and h(q,q') are 
assumed to be C* so they are uniformly bounded when 9.9' 
and q" are bounded, R(t,q,q',q") is also assumed to be a C1 
function uniformly bounded with respect to its arguments; 
t20. The nonlinear vectorial function R cannot be treated 
as an external disturbance. It represents a disturbance of the 
globally linearized error dynamics which is caused by 
modeling uncertainties, parameter variations and external 
disturbances. The multivariable approach then revolve 
around the design of a controller such that the complete 
closed-loop system is stable in some suitable sense, e.g 
uniformly ultimately bounded, globally asymptotically 
stable. etc. for a given class of nonlinear functions. 

Remark: If all the dynamics are exactly known for the 
control of a manipulator, the computed torque controller is 
known to be asymptotically stable in following a desired 
trajectory 151. 

4 - 2 Existence and stability 
The aim of this paragraph is to present a stability 

analysis of the computed torque technique, giving some 
sufficient conditions on the gain parameters. Robustness is 
studied when disturbances are acting on the system; it is 
based on adequate choices of the feedback gains. 

First, a definition taken fnwn [ 101 is presented. 
Definition of the r-admissibi1ity:Let e(q,t) be 

a vectorial application of class ~ k ,  1 from an open 
subset a of R n x  R to Rn. e(q,t) is an r-admissible 
function on the set cr,T during the time interval [&I if 
and only if the function F(q,t) =(e(q,t),t) is a Ck class 
diffeomorphism (Le its reciprocal is also a Ck class- 
bijection, ) from Cr,T onto the closed sphere B(0.r) x 
[O,T] centered at 0, of radius r. 

Existence, unicity and stability 
If the gain matrices fulfill the following conditions: 

H1) Kp(t), Kv(t) and KI(t) locally integrable 
*) Each coefficient of Kp(t), KV(t) and KI(t) is Bore1 
measurable on C r , ~  
**) Sup ( ~Kp(t)!o,kv(t)!o, IKI(t)!o ) is Lebesgue 
integrable on each compact interval IT= [O;rl i.e 

JSup ( IKp(t)!o.k(t)lo, !KI(t)lo 1 dt < 00 
0 

H2) Kp(t) is positive definite and uniformly bounded on IT, 
and its coefficients are derivable, 
SuptE1.r ( IKp( th  

H3) There exists a constant y such that: 

t 

t E [O,Tl (9) 

IF 10. TI 
and s u p t ~ I ~ (  Kv(t)IIo)<= (10) 

Kvj(t) Kpj(t) - KIj(t) + Kpj(t)= 7, j=l, ...a (11) 

I sup( IR(t,q,q',q")l 1 H4) !x"(q,O)i+ 
SUP ( k 4 t ) ~ o )  

5 min (ljnf (~Kp(t)!o )). r (12) 
We have then the following results: 
i) Existence and unicity of the solution of problem (6) : 
The solution X(q,t) exists and is unique on cr,T. 
ii) Stability of the solution: 
v t E  IT, lX(q,t)k r where X=(X$,X")~ (13) 
Moreover, the solution X(q,t) is exponentially stable in 
the neighbourhood of 0. 

The proof of this theorem is adapted from perturbations 
techniques 11.2.71. It may be found in Appendix A. 
Remark :  The constant y is introduced to avoid 
cancellation of the integral gain KIj when the derivative 
gain Kvj and Kpj are null. 

Theorem 1 allows us to analyze the effects of every 
component appearing in the differential equation on the 
stability and the asymptotic behaviour of the error e(q,t). In 
fact, it shows that if the initial error !e(q,O)! is small 
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enough, then there exists a minimal nonlinear gain such 
that if IKp(t)l is greater than this gain, then !e(q,t)l stays 
inside the sphere B(0,r). A constant gain, when large 
enough, may be sufficient to guarantee stability of equation 
(1) in a domain that size increases with the size of Kp. 
Large constant gains do also present drawbacks, like 
sensitivity to noise or high energy in the control torques. 

V - SENSITMTY ANALYSIS 
5 - 1 Problem formulation 
The problem to tackle with may be stated as: 

"May a small variation of the gain matrices lead to a 
similar behavior of the system or to a completely different 
one ?" 

Let Ekv(t) , Ekp(t) and EE(t) n-vectors representing the 
perturbations of the elements of the diagonal gain matrices. 
We would like to study the existence, unicity and stability 
of the solution q(t) associated with the pertubed problem: 

x(q.0) = x'(q,O) = 0 , t E J, J= [ O , q  (15) 

5 - 2 Existence, unicity and stability 
a) Abstract fomuUl.m of the Droblem 
Let Z=C(J,IRn) the set of continuous functions on J. 

Let us define a norm on Z such that 

Thus (Z, b o  ) is a Banach space[ 71 
Let SO = C3(Jpn) the set of three times continuously 

differentiable functions on J and let us define a norm on SO 
such that 

v z E Z .  lzllm = sup Iz(t)U t E  J (16) 

v E SO, uynso= iYuo0 + u y ~ u o o  + uY"noo + n y ' ~ ~ u o o  
(17) 

Thus (SO, I.1~0 ) is a Banach space. 
Let us define the linear operator on S by: 

h satisfies the following properties: 
1) h. is continuous with respect to x, R and E. 
2) h(0,O.O) = 0 (23) 

Problem (14) is equivalent to the abstract formulation: 
Lx=fa(x.R,&) E E A, R E Z, x E d o m L  , 
t € J  (W 

A solution of problem (14) is also solution of problem 
(24) and nxiprocally. 

b, Theorem 2; 
If the gains matrices fulfill conditions H1, H2, H3 and 

H4ofTheorem 1 and 
H5) Ekv(t), &kp(t), Eki(t) are bounded on each open 
subinterval of J. 
Then the solution xO(q,t) of problem (14) exists, is unique 
and stable in a neighbourhood of 0 in Cr ,~ .  

The proof of Theorem2 may be found in Appendix B. 
Remark: Extension to [0, + 00 [. The results obtained in 
Theorem2 may be applied to xO(&) and on each subinterval 
of [0, + OO[. with the conditions 
a) xO(E) is infinitely r-admissible on 

b) 

c) 
d) Ekv(t). Ekp(t), Eki(t) are uniformly continuous and 
bounded on Rn. 

c r  = SUP cr,T t E [o, + 00 [. 
(q.t)]-'k) is uniformly bounded on Cr. 

Q 
(q,t)!o is uniformly bounded on Cr . 

VI - CONCLUSIONS 
Manipulator's control system based on computed toque 

technique incorporates a model of the manipulator 
dynamics. The nominal torque, computed using this 
mathematical model, does not reflect the effects of 
unknown loadings and uncertainty in modelling the 
parameters. An approach is presented in this paper, 
considering this problem, We propose a stability analysis 
of the computed torque technique using a PID regulator, 
with nonlinear varying gains. 

Use of nonlinear gains provides an additional degree of 
freedom in the design of control scheme, as an alternative 
to the use of a constant gain. It may allow the overall 
performance of the system to be improved. The reason is 
that a constant gain may be turned with respect to the most 
unfavourable case, while a non linear gain can be designed 
so as to vary with the robot configuration, and assume 
large values only when it is really needed. It is also 
interesting to investigate if a small change of the regulator 
gains has a small effect on the behavior of the robot. 
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Where  
M = I xn(0)l + SUp(q,t)ECr,t IR(t,q,q',qV/m 

thus EI is llniformly b o ~ d e d  onto Cr,z by M. for 
(A13 

z 5 T. 
3- 

Kv(t) and KI(t) verify assumption (H3). We have then: 

using m a t r i d  notation. we may write: 

satisfy equation (A3) and the matrices Kp(t), 

x"= - Kp(t) x (A16) 

Where: 

= ( $(t) ) 
with Xi(q,O) = o and XI= (xst?T 

The homogeneous problem associated with problem 
(A17) is given by: 
- = - M(t) XI with X(q.0) = o 

It is equivalent to the equation: 

Let 
a = min (1, inf t 

we have: 
x ~ T  M(t) XI 2 a UXl(t)U2 

The solution of problem (A17) 
U X  l(q,t)Us Ix"(q,O)Uexp(-at) 

& 

XITXI' = - X1T A2(t) x 1  

IKp(t)!) 

tisfy the in 

so. we can deduce that the non-homogeneous problem 
solution satisfy: 

4) We demonstrated that Xl(q,t) is uniformly bounded 
by r on each interval Iz . More, &l(t) is also uniformly 
bounded on 1% . Thus, the solution Xl(q,t) exists and is 
unique on the inkrval [O,T[, by continuity, x(q.t) exists and 
is unique on I. 

Moreover, the solution of problem (6) verify (A25). 
Thus, the solution x(q,t) of problem (6) is exponentially 
stable in the neighbourhood of 0. 

APPENDIX B: Proof of Theorem 2 

Leray-Schauder Theorem: Le& S be a banach space and 
U(.,&) an operator defined from S to S depending on a 
parameter E, E€ [q,e2] 2 (0) (for some chosen eland 
~ 2 ) .  Assume that 
1) U(y,e) = 0 for an e E [el,e21, V y E S  031) 
2) U(~.E) is continuous and compact for 
y E s, E E [%E21 032) 
3) U(y,&) is uniformly bounded on E , on each bounded 
subset of S. 
4) There exists an a-priori estimation, independent of e, for 
the fixed points of U(ys). 

Then. there exists a continuum of solution of equation 
y = U(Y,E) when e takes all values in the interval [el,qI . 

First let us recall the following t h e "  [71. 

The proof of Theorem2 is broken into two steps: 
A- First -7 

*) If Ekv(t)= 0, ap(t)=O and efi(t)=O, then there is no 
perturbation acting on the dynamical system and in this 
case, problem(l4) is equivalent to problem(6) and 
Theorem1 applies. The solution x(q,t) is unique and stable 
on cr,T. 

. .  

*) For an &Eh, let us define: 
xO(q.t) = x(q.t) + Y N  (s3) 

Ly= h(x+y,O. E) = hl&, E) W) 

d o m l k  (y€S. y(O)=y'(O)=y"(O)=O; lykr) 03s) 

Thus, problem(24) is equivalent to: 

where y E  domlL with 

and &Eh. 
As the homogeneous problem Lx=O admits as unique 

solution the trivial one, using the Fredholm alternative we 
may conclude that L is invertible. Let us call L-l the 
inverse operator of L. the closed graph theorem [71 shows 
that L-l is bounded. a0 is the superior bound of L-l. To 
find a solution of problem (B4) is to find a fixed point of 
the operator 
u(.,E)=L-~ (W(.,E)), &EA. 0 

Let us use the Leray-Schauder theorem and first 
verify if its assumptions are fulfilled: 
1) When the dynamical system is not perturbed (Le E=O) 
then U(y.0) = 0. 
2) continuity of U(yp) on y. 
First, let us define (Yn)nENa sene such that @n)+y 
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All the assumptions of the Leray-Schaude? Theorem are 
fulfilled by the operator U(y,&), v y E S ,  VE €[0,&21. 
Thus, its conclusions hold. The solution of the problem 
U(Y,E) = y , y E S  and E €A, admits a continuum of 
solutions y ( ~ )  E S  unique where S takes values in 10. a l .  
y( E) is continuous and lim&+o y(&) = 0 
y(&) is r-admissible on S as x(t) is r-admissible on S and y 

verifies equation (X) ,  l y k r ,  V t E J ,  and thus the 
solution of problem (14) exists and is unique. 
B- s m w  

As the initial condition of problem(l4) verifies 
hypothesis H4 of Theorem1 and y(t) veriftes the relation , 
the solution y ( ~ )  verifies: 
v E €A, v t E J ,  ly(&)br, 
Thus y(&) is stable on Cr,T. on a neighbourhood of 0. 

The solution y(&)EB(O,r), the results hold for q(&) 
solution of problem (14). with E €A, E E [ O ,  ~ 2 1  exists, 
is unique on cr,T, and stable in a neighbourhood of 0. 

. .  

rg is independent fiom &e perturbations. 
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APPENDIX A: PROOF OF THEOREM 1 

homogeneous problem: 

where the matrix A is given by 

With matrix notation, we obtain for the non 

X' = A(t) X + B(t) X(0) = ( 0 0 ~ " ( 0 ) ) ~  ( A 0  

I 

and 
B = (  0 0 ) 

R("4'4") 
1- The problem is described by equation . (Al) .  

R(t,q,q',q") is continuously differentiable and the matrices 
Kp(t), KV(t) and KI(t) verify assumption (Hl). The initial 
conditions being(O,O,x"(O)) with hypothesis (H4), the 
solution of (Al) exists and is locally unique on some 
interval 1~=[0,'5[; '5 < T. 

To show that the solution of (Al) exists globally on 
I,, we'll prove that x is uniformly bounded on some 
interval 1.1 by r and x' and X" are uniformly bounded by 
constants independent of r. 

2- Let's introduce the auxiliary vectoriel function €1 
defined as: 

O I s I t I ' 5  (A6) 
Let 

From [7]. we have: 
m = I n f t E 1  k v ( t ) i o  ( A 3  

I exp(-Kv(tl)(t-s)) x"(q,O)bl x"(q,O)l exp(-m (t-s)) (A8) 
Kv(t) being locally integrable on 1, and R(t.q,q',q") being 
uniformly bounded on cr,T, if 

then ~1 is such that 
1 t - o I c q(&), for each e>O 

I ~1 (t) E-~I(s) I I I xiyq,o)ll exp(-m (t-s)) 

+ E I (exp(-m(t-a)) k1(a)c11 (s)i do)+ 

(As) 

t 

S 

0 I s l S ' 5 l T .  
and thus 
I & I  (t)&-'I(s) I I M 
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