
Decentralised PD and PID robotic regulators 

Y. Bestaoui, DES, MS 

Indexing terms: Robotics, Cybernetics and robotics, Numerical analysis, Nonlinear systems 

Abstract: The paper presents a new method of 
robotic manipulator control based on decentral- 
ised pole-placement feedback deduced from the 
computed torque method. An anticipatory action 
is included in the controller by ensuring sub- 
sequent desired joint positions, velocities and 
accelerations in the Newton-Euler equations of 
motion. The desired torques and the co- 
ordination parameters are computed in the first 
level (discrete) when the torques coming from the 
decentralised PD or PID regulators are computed 
in the second level (continuous). The parameters 
of the decentralised PD and PID regulators are 
given by simple laws. Decentralised control is 
appropriate for this control scheme because it is 
very easy to share calculations among the micro- 
processors with few interconnections. Then the 
stability of the regulator is investigated. Finally, 
the simulation results obtained for the PD and 
PID regulators are presented. 

1 Introduction 

Feedback control of robotic devices is usually organised 
on hierarchical principles. For robot control, hierarchical 
and decentralised control approach has become a neces- 
sity due to natural hierarchy in the control structure and 
the complexity of decision making in a centralised situ- 
ation. In fact, the control of the overall system cannot be 
handled in a single level. Multiprocessor architectures 
with dedicated joint processors are often used to control 
industrial robots [ 11. This approach ignores the coupling 
between joints and treats each joint as an independent 
servo-loop with constant feedback gain. The penalties of 
applying this static control strategy to an inherently 
dynamic system are the slow speed and considerable 
vibration of the robot arm. This approach has been com- 
pleted by introducing a global feedback for compensation 
of inertial and gravitational forces [2]. 

Our primary objective, in the work described here, is 
to propose a controller that has a simple structure, is 
easily implemented and is capable of path following for 
manipulators. This paper presents two levels of a hierar- 
chical structure designed for the co-ordinated control of a 
multiple-degrees-of-freedom manipulator. This algorithm 
uses the horizontal division notion, which takes into 
account the interconnected aspect existing in the robot 
manipulator system : the coupled degrees of freedom. 
Each degree of freedom is considered as a subsystem. The 
first stage is the reference torque and co-ordination 
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parameters computing level. A decentralised control 
system is designed for each degree of freedom, where all 
the gains are calculated by simple linear laws. These two 
levels are derived from the computed torque method. 

The following assumptions are made throughout this 
paper: 

(Al)  The joint positions and velocities are measurable 
and the values supplied by respective sensors are exact. 
No information is required about the joint accelerations 

(A2) The actuators dynamics are negligible in com- 
parison with the manipulator dynamics 

(A3) The actuators’ driving torques are not restricted, 
the task is correctly planned so that the actuators’ torque 
limits are never reached 

(A4) The sampling interval is small enough so that the 
discretisation effects can be neglected. 

Assumptions (AlHA4) are very common and do not 
impose any severe constraints on the following dis- 
cussion. 

2 Mathematical model 

The manipulator motion is represented by a mathemati- 
cal model which is introduced in the following discussion. 
The manipulators are assumed to be made of rigid links. 
Any modes of unmodelled dynamics are neglected, such 
as those due to joint flexibilities; therefore the only 
uncertainties allowed in the robot model are those due to 
parameters like the payload, link mass, link dimensions 
etc. and external disturbances. We treat these uncer- 
tainties to compact sets, so that the control problem may 
be treated in a deterministic setting, instead of a stochas- 
tic one. 

A priori information needed for control are a set of 
differential equations describing the dynamic behaviour 
of a manipulator. Two main approaches are used by 
most researchers to systematically derive the dynamic 
model of a manipulator: the Lagrange [6] and the 
Newton-Euler [7] formulations. The Lagrange method 
separates the inertial, Coriolis and centrifugal, and gravi- 
tational terms of the equations of motion. The Newton- 
Euler is a general recursive formulation and can handle 
manipulators with any number of links ana any configu- 
ration. The major factor that contributes to the overall 
computational efficiency is the use of closed-form solu- 
tions in symbolic form, which reduces the number of 
required arithmetic operations. 

The dynamics of a multilink articulated robot manipu- 
lator, excluding the actuator dynamics, gear friction and 
backlash, can be characterised by a set of nonlinear and 
coupled second-order differential equation : 

where r are n x 1 external applied torques for joint actu- 
ators, q are n x 1 joint angles, 4 is the n x 1 joint velo- 
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cities, ;i are n x 1 joint accelerations, G(q) is the 
gravitational force vector, B(q, 4) the Coriolis and cen- 
trifugal force vector and A(q) is an n x n inertia matrix. 

The important aspect of robot manipulator control, 
trajectory tracking, is presented in the following Section. 

3 Control system 

Given the equations of motion of a manipulator, the 
control problem is to find the appropriate torques to 
servo all the joints of the manipulator in real time, to 
track a desired trajectory as closely as possible. In fact, if 
the plant model was perfect, then there would be no need 
for the feedback gains ; we would have a perfect open- 
loop controller. However, we never have a perfect model 
of the plant and need the feedback loops to overcome the 
effects of modelling errors. 

3.1 Computed torque technique 
Industry generally uses classical techniques like PD or 
PID controllers, with constant parameters, to operate the 
robots that it employs. However, the recent literature has 
been investigating how to increase the speed and tracking 
accuracy of the manipulators. A number of control 
schemes have been proposed, such as the inverse tech- 
nique [SI, the computed torque technique [9, lo], table 
look-up methods [ll],  linear controllers [12] and nonlin- 
ear decoupling controllers [13]. In fact, Khalil [9] 
proved that the computed torque technique is equivalent 
to the nonlinear decoupling method. 

The computed torque technique sets the basis on 
which much of the present literature on robotic trajectory 
control is based. In this method, we compute the neces- 
sary torques based on the inertial dynamics of the manip- 
ulator. For example, we may use Lagrangian or 
Newtonian mechanics to model the manipulator 
dynamics. In the control scheme, preceding the robot 
dynamics, an inverse model is incorporated. This inverse 
model calculates the torques needed for the reference tra- 
jectory. A great advantage is that the whole system 
(inverse model + robot) has an almost linear behaviour. 

To control the manipulator, the control law [9] is pro- 
posed : 

where 

and 

or 
r 

Al- = A(qd) K;(qd - 4) + K;(qd - 4) 1 
where A^ B and are estimates of A ,  B and G ,  respec- 
tively, K, and K, are n x n constant diagonal gain 
matrices with K,, and K Z j  on the diagonals (idem for K ; ,  
K; and K;) .  The desired trajectory of the manipulator is 
given by the trajectory planning system [4, 5, 15, 161. 

This control law is chosen because, in the favourable 
situation of perfect knowledge of parameter values and 
no disturbances, the jth joint has closed-loop dynamics 
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given by the error equation: 

e, + K l j k j  + K,jej = 0 (PD) (6) 

e, + K;,t., + K;,ej + K;, e, dt  = 0 ( P W  (7) 

or 

s 
where 

e .  = q .  - 44, k j  = 4, - 44, 2.  = 4. - q! J J  J J J  

In this ideal situation, the K,,, K , , ,  K;,, K;, and K ; ,  
must be chosen to place the closed-loop poles of each 
joint so that each degree of freedom may react like a 
critical damping system, in this case, 

K Z j =  -p2 and K l , = 2 p  (PD) (8) 
or 

KLj= -3p2, K ; , =  3p and KLj=p3 (PID) (9) 

where the pole p is chosen so that the system will be 
stable. 

Servosystems must be critically damped to achieve 
satisfactory fast positioning. Overshooting may be quite 
undesirable in some cases; for instance, if the position- 
controlled motion is only a prelude to a compliant task. 
The same pole for all degrees of freedom is chosen to 
avoid the delay due to different poles. 

The principal difficulty is obviously related to the 
computability of the control in real time. The original 
idea was to compute the driving torques as a function of 
the desired motion represented in joint variables, velo- 
cities and accelerations, and its drawbacks were mainly 
due to the real-time evaluation of the complete dynamics. 
Because of the nature of the Newton-Euler formulation 
and its method of systematically computing the joint 
torques, the computations are far less numerous than 
those of the Lagrange method [7]. We shall then use the 
Newton-Euler equations to compute the nominal torques 
along the desired trajectory given by the trajectory plan- 
ning system [lS, 161. 

3.2 Regulator gains adjustment 
In reality, eqns. 2-5 are too difficult to implement in real 
time, so it is proposed that the PD or PID regulator 
parameters, given by eqn. 4 or 5,  will be approximated by 
simple laws and that a hierarchical structure will be used. 
The computations will be divided into two groups: con- 
tinuous and discrete (Fig. 1). The computing of the 
desired torques Td and the co-ordination parameters w 
belong to the discrete level, and the PD or PID regula- 
tors torques to the continuous one. 

For the purpose of obtaining a decentralised control in 
the joint space, the inertial matrix can be redefined as 
follows 

A(qd) = A' + AA(q)  (10) 
A' contains only the diagonal terms of A(q), and A&) 
accounts for parameter uncertainties along with 
q-dependent and coupling terms of A(q). 

The control law becomes then: 

Ti = r: + k,i(qf - qi) + K,,,(q! - q i )  + wi (PD) (11) 
or 

ri = r: + k,,(q: - qi) + K&: - qi) 

+ wi + K;i (4: - qi) dt  (PID) ( 1  2 )  s 
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-71 adapta t ion  

loca l  unit  3 

I I '  interconnect ions 

Fig. 1 Sharing ofthe computations: continuous and discrete 

and 

K U i  = -2pAii(qd(t)); i = 1 , .  . . , n 

wi = 5 Ai,(p2ej - 2p t j )  
j = l , j # i  

14) 

or 

wi = Aij(3p2ej - 3pdj + p 3  e j d t  (PID) (16) 

The terms Aii (i = 1, ..., n) consists of trigonometrical 
elements, and their evolution is very smooth, so we can 
attempt to approximate these terms by simpleJaws. This 
step is robot-type dependent. Each term of A,  n in all, 
may be plotted against the normalised time z. In general, 
linear interpolation is sufficient: 

j = l . j # i  S )  

Aii = U i Z  + pi (17) 
z = t / t f  is the normalised time with t f  the predicted 
arrival time and the coefficients ai and p i  are computed as 
follows : 

Let A : ,  A i  and A; be the values of the inertial matrix 
diagonal terms evaluated at the initial, final and medium 
points, respectively, then for 

0 < z < 0.5, ai = 2(A; - A:) and pi = A: (18) 

0.5 < 7 < 1 ,  ai = 2(Ai  - A;) and pi = 2A; - A i  (19) 

and the parameters K P i  and K U i  (or K b i ,  KLi and K i i )  are 
calculated via eqns. 13 (or 14). The computation of A', 
Af, A", U and p can be done offline. Online, it will suffice 
to compute eqns. 17 and 13 or 14. The functions Td and 
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w being very regular, they can be approximated by step- 
wise functions : 

wm = w, rdm = Td, for mA < t < (m + 1)A 

rdm are the desired torques calculated for qdm, rnth sam- 
pling of the desired positions qd, qm is the rnth sampling of 
the position q and W" the rnth co-ordination parameter. 

Thus, the P D  regulator presented computes preceding 
motor torques as 

r = rdm + W m  + Kp(qd - q)  + ~ , ( q ~  - q) 

d = -(A(qdm) - A'(qdrn)xp2em - 2 p ~ )  

K p  = p2M and K ,  = -2pM (22) 

(20) 

(21) 

(23) 
The PID regulator is analogous to the eqns. 2&23, 
except that we must add the integral term and change the 
coefficients of the pole p :  

with 

M = diag ( c ~ ~ T  + PI,  a2 z + p 2 ,  . . . , U, z + p,) 

r = rdm + wrn + K,,(qd - 4) + zc,(qd - q) 

+ KI S k d  - 4 )  dt (24) 

K I =  - p  3 M ,  K ,  = 3p2M and K ,  = -3pM (25) 

W" = -(A(qd") - A'(qd")) - p 3  e"' dt ( S  
+ 3p2e" - , p i - )  (21) 

4 Multi-microprocessor implementation of the 

Hierarchical control and decentralised observers are 
appropriate for this control scheme, because it is very 
easy to share the calculation among microprocessors 
with few interconnections. This considerably increases 
the reliability of such a control system. The most suitable 
use of microprocessors is for real-time control, as there is 
a substantial need for robot controllers with enough 
power to execute servocontrol at high sampling rates. To 
work, well with a multiprocessor system, a procedure 
should have a high percentage of tasks which can be exe- 
cuted in parallel, without requiring interprocessor com- 
munication. 

One possible version of the multiprocessor solution of 
the observer and control is described here. Fig. 2 shows 
the block scheme of such a solution. In this case, one 

control system 

I"' " '  U 

Fig. 2 
tion 

Block scheme of a possible version of the multiprocessor solu- 
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microprocessor is adjoined which realises the local obser- 
ver and local regulator for the ith joint. Each local micro- 
processor must be equipped with an analogue/digital 
convertor: on the basis of these, the system state is recon- 
structed by means of the local observer on each sampling 
interval, and the control (being fed to the digital/ 
analogue convertor) is calculated. The task of the ith 
microprocessor will be to compute the reference trajec- 
tories, the gains given by eqns. 13-14, the difference 
between the desired and actual trajectory e i ,  and the 
motors torques defined by eqn. 20 or 24. 

The central microprocessor synchronises the work of 
all microprocessors and computes the nominal torques 
using Newton-Euler equations of motion (eqn. 3) and the 
co-ordination parameters (eqns. 15-16). Its sampling 
period may be higher than those of the local micro- 
processors, to have the time necessary to compute the 
centralised mathematical model of the robot and the co- 
ordination parameters, using desired positions, velocities 
and accelerations. 

The basic advantage of such a microprocessor struc- 
ture is that there is relatively little communication among 
the microprocessors, i.e. a small exchange of information 
among the microprocessors on one sampling interval. All 
the links among microprocessors are via the central 
microprocessor which synchronises the work of all the 
local microprocessors, determines the sampling time, 
sends data about the nominal torques and co-ordinating 
parameters, and receives data about the reference trajec- 
tories. Between the local microprocessors themselves, 
which determine the local observers and regulators, there 
is no exchange of information. 

5 Stability analysis 

The task imposed can be defined as the task of trans- 
ferring the system state from an initial point to a defined 
point in the state space, in a finite time interval [0, t r ] .  It 
is required that, during the transfer, the system state 
remains within a bounded region C around the desired 
trajectory. The system is considered to be practically 
stable, if, for all initial points, the position q remains in C 
and, finally, the desired point is attained. The method of 
proof is as follows: 

The control given by eqn. 20 is applied to the actual 
manipulator given by eqn. 1. The resultant closed-loop 
equations of motion are rewritten in a form which makes 
stability analysis possible. The analysis is done, first, for 
the PD regulator, which is divided into two parts. First, 
we investigate the effect of the linear approximation of 
the diagonal inertial matrix elements on the stability, 
assuming that the computation of the desired torques 
and the co-ordination of parameters is done contin- 
uously. In the second part, we consider the effect of the 
sample interval A on stability. Finally, the stability 
analysis of the PID regulator is performed. 

We deal now with the linear approximation effects. Let 
C be a compact and connex set in R" x [0, t,.], the initial 
point (q(O),  0), the final point (q(tr), t f )  and the desired 
trajectory in the interval [0, tr ]  belong to C. 

The robot dynamics are described by eqn. 1. The 
model is considered to be approximative. It is interesting 
to study the position error, so that eqns. 2 and 3 are 
equalised : 
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A(q)ij + B(q, 4) - G(q) 
= &d")ijd" + fj(qd", 46") - &p) 

+ [&qd") - A'(qd")][ - p 2 e m  + 2pP] (26) 
+ M( -p2e  + 2pk)  

We obtain then a differential equation of the following 
form : 

e + pA,(q ,  t)M(0.25pe + t') + s(q, 4, t )  = 0 (27) 

p =  - 2 p  (28) 

t )  = C4qdrn) + AA(q) l -  ' (29) 

(30) 

(3 1) 

where 

s(q, 4, t )  = Sij + A,(q,  t)[AAij" + AB + AG 

- (A(q") - A'(q"))(0.25 pe" + t')] 

I A 4 q )  = A(q)  - 4 q d r n )  

A m )  = B(q, 4) - fj(qd", qd") 

AW?) = G(q) - &ld") 

Sq = qd - q m ,  S q  = qd - q", Sij = ijd - ij" (32) 

these differences can come from inaccurate parameter 
identification (mass, inertia, . . .) or from unmodelled 
dynamics, or truncated calculus. 

The robot system is a physical system, the (n x n) 
matrix function A,(q,  t )  being C', A ,  is the inverse of the 
inertial matrix, and is symmetric positive-definite. The 
matrix M ,  being a diagonal matrix, is symmetric. To 
show that M is positive-definite, we must check if all the 
elements are positive, i.e. 

ai z + pi > 0 for t E [0, tr ]  and i = 1, . . . , n 

Exprs. 18 and 19 allow us to ensure that these ele- 
ments are positive, taking into account the fact that the 
inertial matrices A', A" and A /  are positive-definite. The 
vector function s is C' on an open set included in 
R" x R x R" containing C x R"((q, t )  E C ,  q E R"). 

This differential eqn. 27 can also be stated in the clas- 
sical form : 

d X  
dt 
- = F(X,  t )  (33) 

where 

) (34) 
t' 

= ('e> F(X' t ,  = ( -pA1M(0.25 p e  + k )  - s 

To facilitate stability in the proof, the following notations 
are used: 

U" = least eigenvalue of matrix M 

uM = greatest eigenvalue of matrix M 

and let the constants om, oM/P" defined as 

0 < om < inf (d"(q, t ) )  
(4. 1 )  E c 

oM 2 sup (uM(q, t ) )  

o < p m < 1  

b m a x  2 1 

(4. f )  E c 

We can then state the following theorem: 
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Theorem: If 

P ' Po 
The initial conditions are such that 

140) I + 180) I / P  < (1 - l/.)P"(a"/~")"2/bmax 
a > 1 (35) 

The function s is uniformly bounded, then the differential 
equation solution of e(t) exists and is unique on [0, tf] : 

Vt E CO, tfl ,  14) I d PI I 8t) I P' (36) 

Proof; All the functions involved in the differential equa- 
tion being C', the function F(X,  t) is also C' on an open 
set containing C x R". In fact, the application of a clas- 
sical theorem of the differential equation theory allows 
the conclusion to the local existence and unity of the sol- 
ution {e( t )}  when (e(O), 0) E C .  

We must show now that, by imposing supplementary 
conditions on the gain p [17], the solutions are prolon- 
gated until the instant t with 

V t  E CO, tfl, Ie(t)I < P 

Po = K/(o")"2/p/(l - l b )  

Let p o  be a positive scalar defined as 

(37) 
The next step is the proof of the unity and 

boundedness of e(z)(O d 7 d t f )  with the boundedness of 
le(t)l, by a constant independent of z. For this, let us 
study the differential equation 

Q = -0.25 PAi(q,  t )MQ + P(Q + N Q  + 1) (38) 

with the initial condition Q(0) = 0 
The existence and unity of Q(t)  on [0, zl](zl d z) 

follows from the existence and unity of q(t)  and G(t) on 
CO, T I .  

Let qi be the ith column of the matrix Q :  

qi = Qri (39) 

rT=(O,O ,..., 1,0 ,..., 0) 

where ri is the unity vector: 

T 
ith rank 

If we multiply eqn. 38 by qTM and r i ,  we obtain 

0.5 - (q'Mqi) = -0.25 PqTMAlMqi + Z;  (40) 

z;  = ,uqTM(Q + I)(Q + Z)ri - 3q?Mqi (41) 

M = diag ( a l / t f ,  a2/tf, . . . , a J t f )  (42) 

Yi = uqi  (43) 

( i t  ) 
with 

If we define 

where U is the square-root matrix of the symmetric 
positive-definite matrix M :  

M = U 2  (44) 

U = diag ( ( q z  + B1)l12, . . . , (a,z + & ) ' I 2 )  (45) 

then 

Eqn. 40 can be rewritten as 

(46) 
d 
dt  

0.5 - I $ I = - 0.25 p y,TUA , U y i  + Z ;  
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with 

z: = 0.25 p yTU(Q + Z)(Q + Z)ri 

- 0 . 5 y T u - ' M u - '  Yi (47) 
Applying the classical inequalities on matrical norms, we 
obtain : 

I 4  I d (~/4){(a"/a")'~~ I Q I I Y? I 
+ (a")"' I Q I I Yi I + (aM/am)1/2 I Y? I 
+ (a")'" I yi I + 
+ 0.5(~") ' /~  I M I 1 y? I 

I Yi I I 
(48) 

We wish to prove that there is no instant t l  such that Q 
is unbounded. Suppose that there exists an instant t ,  
(0 d t ,  < zl) and a column q,of Q such that 

I Y & l )  I = (am)0.5B"(an)- ' 
Vj ,  (1 < j d n), 
V t  E [0, t,[: I y,(t) I < (crm)'/2fim(an)-1 

(49) 

with 
n 

I Q 1  d ClqjI and Iq j l  dlU- ' l  lyjl 
j =  1 

then, necessarily, at the instant t ,  : 

IQ(tl)l d I U-'(tl)l(om)'~2~ma-' 
< (omlam( t ')) '1' #?'"a - (50) 

Using expr. 50 substituted into expr. 48, we have 

I zKtl) I < {~(a"/a")'~'[(Bm/a~am/am)'iZ 
+ (n + 1) + n(a/~mXam/am)'i2] 

+ 0.5 I M I  /am)t=tl  I yi(t1) I 2  (51) 

and, consequently, 

yi being continuously differentiable on [0, z1 [, this 
inequality contradicts the assumption of existence of the 
instant t ,  as I y i  I cannot attain, for the first time, the con- 
stant (om)0.5flm(an)- ' with a negative derivative in this 
instant. We have then to establish that 

(53) 

Let CO, z2[(zz < rl), the greatest time interval included in 
[0, rl]  where I e(t)I d p. Using eqns. 53 and 43 imme- 
diately gives 

V t  E [O, zl[, i E [l,  n]; Iy,(t)I < (om)0.5#?"(an)-' 

Vt E CO, ~ z L  I Q(t) I < B"/a) (54) 

V t  E ro9 z 2 L  Ie(t)I < P 

This constant is independant of z2 and 

This theorem shows that, if the initial errors I e(0) I and 
It.(O)I are sufficiently low, then e(t) belongs to the neigh- 
bourhood of 0 for t E [0, tf]. 

Now, we evaluate the effect of changing the sampling 
period A on the performance of the proposed control law. 
The gain matrices are a function of the sampling rate of 
the control system. This algorithm admits a distributed 
implementation, whereby n processes perform computa- 
tions and exchange messages with the end goal of mini- 
mising the difference between the real and the desired 

- 
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trajectories. If all n local processors communicate to each 
other their partial results, at each instance of time, and 
perform computations synchronously, the distributed 
algorithm is mathematically equivalent to a single pro- 
cessor algorithm, and its convergence may be studied by 
conventional means. 

From a classical theorem [19], we have 

IIAAII 6 kA (55)  

witk k defined as the upper bound of the time derivative 
of A :  

The same notations are employed for AB and AG. 
If A is beyond a certain threshold (A' < A 6 t,.), an 

oscillation may exist because of the application of a step 
to a nonlinear system. The oscillation is, then, approx- 
imately at the sample frequency. The remedy would then 
be the diminution of this step, then the diminution of the 
gain p. In practice, smaller gains are always preferable, 
when possible, so as to minimise sensitivity to sensor 
noise and oscillation occurrence. 

The same proof is valid for a proportional-integral 
derivative regulator. For the PID regulator, eqn. 27 then 
becomes 

z + pA,(q ,  t)M( -p2/27z + p/3i + z) + ~ ( q ,  4, t) = 0 (57) 
where 

p =  -3p (58)  

s(q, 4, t )  = 6Z + A,(q,  t)[AAz" + AB + AG 
- (A(q") - A'(qm)N-p2/27zm + p / 3 i m  + Z)] (59) 

i = e ,  z=k, z = e  (60) 
Eqn. 57 can also be stated in the classical form: 

d X  
dt 
- = F ( X ,  t) 

where 

= (i) 
and 

e 
k 

- P A ,  M (  - p2/27z + p/3i + Z) - s 
F(X, t) = 

The same proof as shown previously (eqns. 30-55) is 
valid for this new function F. It will be omitted. 

This Section has been treating perturbations in the 
feedback law. It is shown that the situation is robust: 
steady-state errors are small and stability is maintained, if 
errors in the feedback law are sufficiently small. 

6 Simulation results 

Many numerical simulations to the first three joints of 
the robotic manipulator MA23 and the Stanford arm are 
illustrated in this Section to test the efficiency of the pro- 
posed control scheme. Fig. 3 shows schematic diagrams 
of these manipulators. 
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To obtain comprehensive information about the tra- 
jectory tracking capabilities of this technique, the algo- 
rithm has been evaluated over eight different operational 
environments. The eight test configurations can be 
broken down into two blocks: 

/ 

q1 

b 

Fig. 3 
a MA23 manipulator 
b Stanford arm 

Configurations ofthe studied manipulators 

(a) when the nominal mass of the third axis and the 
load (m3 = 4 kg) is overestimated by 50%, with respect to 
the assigned mass (m3 = 6 kg) 

(b) when the nominal mass of the third axis and the 
load (m3 = 4 kg) is underestimated by 50%, with respect 
to the assigned mass (m3 = 2 kg). 

The nominal values were used in the computation of the 
nonlinear desired feedback. The assigned values were 
used in the computational implementation of the robot 
arm. 

In the simulation program, integrations were per- 
formed by the 4th-order Runge-Kutta method with a 
step size of 6 = 0.0025 s. The values of the discretisation 
period A, of the nominal torques Td and the co- 
ordination parameters w, are (a) 0.0025 s, (b) 0.01 s 
(c) 0.025 s and (6) 2 s. 

The initial and final conditions are 

qo = (O,O, 0) and qgOal = (1, L0.5) 
the velocity and acceleration constraints are: 

q,,, = (5, 5, 5) rad/s (or m/s) 

q,,, = (7.5, 7.5, 7.5) rad/s2 (or m/s2) 
and the pole chosen was p = - 30. 

The same experiments were done for the two manipu- 
lators. The case (a) (6 = 0.0025 s and A = 0.0025 s) corre- 
sponds, in fact, to the computed torque method and the 
case (d) (6 = 0.0025 s and A = 2 s) to the classical P D  or 
PID regulator. 

Figs. 4-7 show the evolution of the first two diagonal 
elements of the desired inertial matrix A t  and their linear 
approximation, against the time, respectively, of the 
MA23 manipulator and the Stanford arm. The third 
curve shows how the real inertial element is related to the 
load mass. In the nominal cases (m3 = 4 kg), Ad,, varies 
between 0.1 and 1.1 kg m2 and, in the real case (m3 = 
2 kg), A,, varies between 0.1 kg m2 and 0.65 kg m2, for 

IEE PROCEEDINGS, Vol. 136, Pt. D,  No .  4,  JULY I989 



the MA23 manipulator. In the case of the Stanford arm, 
the third curve visualises the diagonal elements when 
m3 = 6 kg. 

The variations of payload parameters cause variation 
of the moments of inertia around the axes of the robot 
joints. The local controller is synthesised for each sub- 
system, taking into account the moment of inertia of the 
robot mechanism. 

Parts (a) of Figs. 8-23 give the error norm between the 
desired and real positions in Cartesian space, respec- 
tively, for the MA23 manipulator and the Stanford arm, 
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Fig. 4 Evolution of the MA23 manipulator first diagonal element of 
the desired inertial matrix, of its linear approximation and of the first 
diagonal element of the real inertial matrix, when the third axis and load 
mass is 2 kg 
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0, 1 

N N 

a 

Fig. 5 Evolution of the MA23 manipulator second diagonal element of 
the desired inertial matrix, of its linear approximation and of the second 
diagonal element of the real inertial matrix, when the third axis and load 
mass is 2 kg 

N 
E 
0, Y 

- - 
a 

Fig. 6 Evolution of the Stanford arm first diagonal element of the 
desired inertial matrix, of its linear approximation and of the first diago- 
nal element of the real inertial matrix, when the third axis and load mass 
is 6 kg 
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and the parts (b) of Figs. 8-23 show the joint error 
against time, for the same manipulators. 

The first simulation result is that the error becomes 
null at the end of the motion, with the PID regulator. 
There is no overshooting nor oscillation. It is a classical 
remark that the integration term nullifies the static error. 
The results of the PID regulator are better than those of 
the PD regulator, with little difference in the number of 
operations. It is also shown that the difference between 
the error of the A = 0.0025s and A = O . O l O s  cases is 
really negligible. We can then conclude, from that impor- 
tant result, that the decentralised PID regulators can 
react continuously, when the desired torques and co- 
ordination parameters are computed with a period of 
0.01 s. 

2.70r 

0 015 0 3 0 0 4 5  0 6 0 0 7 5  0 9 0  105 1 2 0  135 1 5 0  
time, s 

Fig. 7 Evolution of the Stanford arm second diagonal element of the 
desired inertial matrix, of its linear approximation and of the second 
diagonal element of the real inertial matrix, when the third axis and load 
mass is 6 kg 
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Fig. 8 
a Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 

MA23 manipulator, pole = -30, A = 0.0025 s, m3 = 6 kg 
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Fig. 9 
a Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 

MA23 manipulator, pole = -30,  A = 0.01 s, m, = 6 k g  
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Fig. 10 
a Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 
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MA23 manipulator, pole = -30,  A = 0.025 s, m3 = 6 kg 
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Fig. 11 
a Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 

MA23 manipulator, pole = -30, A = 2 s, m, = 6 kg 
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Fig. 12 
a Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 

MA23 manipulator, pole = -30,  A = 0.0025 s, m3 = 2 k g  
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Fig. 13 
a Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 

MA23 manipulator, pole = -30, A = 0.01 s, m3 = 2 kg 
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Fig. 14 
a Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 
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MA23 manipulator, pole = -30, A = 0.025 s, m3 = 2 kg 
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Fig. 15 
a Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 

MA23 manipulator, pole = -30, A = 2 s, m3 = 2 kg 
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Fig. 16 
B Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 

Stanford arm, pole = -30, A = 0.0025 s, m3 = 6 kg 
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Fig. 17 
a Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 

Stanford arm pole = -30, A = 0.01 s, m3 = 6 kg 
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Fig. 18 
(I Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 
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Stanford arm, pole = -30, A = 0.025 s, m3 = 6 kg 
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Fig. 19 Stanford arm, pole = -30, A = 2 s, m3 = 6 kg 
(I Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 
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Fig. 20 
a Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 

Stanford arm, pole = -30, A = 0.0025 s, m3 = 2 kg 
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Fig. 21 Stanford arm, pole = -30,  A = 0.01 s, m, = 2 kg 
a Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 
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Fig. 22 
a Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 
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Stanford arm, pole = -30, A = 0.025 s, m3 = 2 k g  
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Fig. 23 
a Cartesian error norm resulting from the PD and PID regulators 
b Joint error norm resulting from the PD and PID regulators 

Stanford arm, pole = -30, A = 2 s, m3 = 2 kg 

The algorithm robustness is showed by Figs. 8-23. The 
reference trajectory is well tracked and there is no over- 
shooting. 

The simulation results have also shown that a suitable 
selection of the pole, in computing the feedback gains, 
also plays an important role in reducing position and 
velocity errors in tracking a desired path. It can be seen 
from Figs. 24-27 that, when A > Amin, oscillations may 
occur: this is the case for the MA23 manipulator and not 
for the Standford arm. Diminution of p leads to diminu- 
tion of the oscillations, but the amplitude of the error 
diminishes when the gain increases. It is then necessary to 
perform a compromise between the desired precision and 
the form of the curve (no oscillation is required), for each 
studied manipulator. The interpolation of the diagonal 
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Other simulation results have shown that the form of 
the curves of the inertial matrix elements is independent 
of the value of the maximum velocity and acceleration 
admissible for the actuators. 

7 Conclusions 

Recent advances in microcomputer technology have 
intensified interest in distributed computation schemes. 
Aside from modular expandability, another potential 

advantage of such schemes is a reduction in computation 
time for solving the regulation problem due to parallel- 
ism of computation. This advantage is of crucial impor- 
tance in real-time applications, where problem solution 
time can be an implementation bottleneck. 

This paper is devoted to the investigation of a hierar- 
chical robot control system with a gain-scheduling 
approach. To ensure that the real trajectory is as close as 
possible to the desired one, a two-stage control synthesis 
is introduced: 

(a) a nominal dynamics stage 
(b) a perturbed dynamics stage. 

At the stage of nominal dynamics, the synthesis of 
control Td is performed, which transfers the system state 
from the initial point to the desired goal point, in finite 
time tf. Synthesis is performed at the base of the com- 
plete centralised model without any approximation. 
Because such programmed control is essentially central- 
ised, at this stage, one part of the coupling is taken into 
account. The co-ordination parameters also take care of 
a great part of the remaining coupling. Thus, the coup- 
ling at the next stage is reduced. The local micro- 
processors keep performing computations without having 
to wait until they receive the messages that have been 
transmitted from the central microprocessor, computing 
Td and w. That algorithm can alleviate communication 
overloads and it is not excessively slowed down, by 
neither communication delays nor by differences in the 
time it takes the processors to perform their computa- 
tions, because the number of operations that must 
perform the local microprocessors is very small and the 
functions rd(t) and w(t) are very regular. 

Then, we examine the performance of the exact model 
when synthesised control is applied. We shall, therefore, 
consider the model of state deviation from nominal 
motion, in terms of the model of the mechanical part of 
the system. A comparatively simple control, with respect 
to the computational facilities and feedback information 
required, is considered. Its implementation in real time is 
discussed. The key objective is to implement a control 
law using present-day microprocessors. Its principal 
advantages are: 

(i) it only requires feedback information about the 
joint positions and velocities, i.e. in compliance with 
common practice in industrial robots today 

(ii) it decouples the system, thus providing a natural 
way for development of decentralised multiprocessor 
controllers 

(iii) it considers the dynamics of the manipulator, 
requiring, at the same time, rather restrictive computa- 
tional facilities calculation of the Aii elements. 

Simulation results showed that the algorithm is quite 
effective. The effects of the nonlinearity, couplings and 
gravitational terms can be reduced niostly by the model 
reference compensation. The approximated regulator 
gains give the robot high tracking capability. The algo- 
rithm can be easily implemented online. All the noncom- 
pensated dynamic terms and the parameter uncertainties 
play the role of disturbances to the system. 
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