
Design of robotic discrete minimum energy
regulator

Y. Bestaoui

Indexing terms: Robotics, discrete optimal control, diflerential dynamic programming

Abstract: The optimal control of manipulators is
a key to the success of automated manufacturing.
The problem considered here is an energy mini-
misation problem with given dynamics and is
subject to actuator constraints. A differential
dynamic programming algorithm is developed to
solve the discrete-time optimal control problem.
This method allows calculation of the joint refer-
ence trajectories and the design of a proportional
derivative regulator. The characteristics of this
new method are exposed and the simulation
results shown.

1 Introduction

The current generation of manipulators can complete a
typical positioning task in seconds. The most frequent
task is to transfer the system state from one bounded
region of initial states into another bounded region in the
state space within a finite settling time. The system state
should belong to a bounded region in the state space
during the transfer. A better manipulator performance
can be achieved by improving their mechanical construc-
tion and by using more effective controllers. In this
paper, we are only concerned with the latter. The optimal
control of manipulators is a key to the success of
automated manufacturing. It is therefore essential to
design an optimal manipulator system with a suitable
performance criterion which is consistent with the fore-
going goals.

In many cases, manipulators are desired to move from
one point to another using as little energy as possible.
Consequently, it is important to design an efficient con-
troller which requires less energy, thus pushing the
manipulators to be operated at their maximum efficiency.
This consideration naturally leads to a constrained
optimal control problem of robotic manipulators with a
minimum energy criterion.

The industrial robot is highly nonlinear, which is one
of the reasons that makes optimum control a difficult

minimum time solution along an operational point, using
a linearised continuous model, which represents a gross
simplification. There has also been much interest in the
development of hierarchical algorithms [3,4].

This paper presents a control design methodology for
robotic manipulators considered as discrete-time systems.
The dynamics of the system are then represented as an
augmented equation composed of the states of the
system, interconnected dynamics and constraints on the
control variables. The design of a manipulator feedback
control system on the basis of the minimum energy cri-
terion, is presented. This controller provides a feedback
control algorithm with a simple updating structure so
that it can be implemented in real time on mini or micro-
computers. Primarily, this controller is intended to
provide fast operation speed using less energy and with
reasonable setting accuracy.

2 Problem formulation

For a manipulator with n joints, the dynamic model can
be expressed using a Lagrangian equation as:

W q ” + 4, 4’) + g(4) = 4) (1)

where the n x 1 vectors q, q’ and q” are, respectively, the
joint position, joint velocity and joint acceleration, the
n x 1 vector u(t) is the joint input torque, g(q) is the n x 1
gravitational force vector, h(q, q‘) is the n x 1 Coriolis
and centrifugal force vector and D(q) is the n x n inertial
matrix. The inputs in the model are the forces/torques,
and the outputs are selected as the positions and the
velocities of the manipulator joints.

A 2n x 1 state vector of the manipulator system can
be defined as:

where T denotes the transpose. From eqn. 1, the state-
space description of the system [S, 61 can be given by:

(3)
problem. A second reason is the strict constraints
imposed on the system. Because of the difficulty, few x‘(t) + B(x(t))u(t) + c(x(t))

authors [l, 23 have attempted to minimise the time or
quadratic performance index. When such problems are
tackled by the maximum principle, nonlinear two points
boundary value problems appear and may be solved
using several successive appproximation methods [2].
For example, Kahn and Roth [l] investigate the

where

A = [: ‘a]
0

~ (~ (t)) = [D-l(qd
C(x(t)) = [1 0 Paper 8220D (C8, CIS), received 9th November 1990

The author is with the Laboratoire de Robotique et d’Informatique
Industrielle, 3 rue du Markhal loffre, 44041 Nantes, France - D - 1(4Nh(4, 4’) + dd)
I E E PROCEEDINGS-D, Vol. 138, No. 6 , NOVEMBER I991

(4)

509

with I, the n x n identity matrix. The pair (A, B) is con-
trollable [SI. The state-space model reflects the fact that
robots are variable-inertia mechanical systems.

When a robot is under computer-control, the inputs
u(t) are updated at each sampling instant and maintained
constant by digital to analogue convertors (DAC). The
DAC are the interfaces between the digital controller and
the robot:

u(t) = u(kt) = U' for kT < t < (k + l) T (5)
The natural (continuous-time) state variables of the robot
are the joint co-ordinates and velocities (4 and 4'). These
physical state-variables are accessible and can be meas-
ured directly with currently available instrumentation.
The analogue to digital convertors (ADC) sample the
state variables at each sampling instant to produce the
piecewise constant states of the robot:

q(t) = 4(kT) = 4' for kT d t < (k + l) T

q'(t) = q'(kT) = 4" for kT Q t < (k + l)T

Considering that the manipulator is controlled by a com-
puter, eqn. 3 needs to be discretised. Setting T as the
sampling period and noticing that u(t) is constant in the
interval of time (kT, kT + T), the discretised state model
can be expressed as :

x!+' = xf + Txr+, for 1 < i < n (6)
x;+' = X! + T(D')-'u' + T(-(D')-'(h' + g'))

for (n + 1) < i d 2n (7)

in which we denote the value of the generic functionf(t)
at the instant t = kT withy'

We can set:

E'x' + G'u' + d' (8) x k + l =

where

E'= [k yn] (9)

G' = TB'

d' = TC'

The dynamic control of an industrial manipulator
involves the determination of the inputs for the actuators
which operate at the joints so that the set of desired
values for the positions and velocities of the manipulator
is achieved.

In the feedforward control stage, the driving forces/
torques generated by the planner are realised in the
active region of the actuators. This control design is
accomplished by placing limits on the maximum driving
forces/torques and restricting the actuator outputs to lie
within these limits. For this task, optimal control
approaches can be formulated by augmenting the discrete
dynamic robot model with discrete performance criteria.
Application of mathematical and dynamic programming
can then lead to an optimal feedforward controller.

A generalised version of the statement of the problem
is 'Given the robot's dynamic properties and the robot
characteristics, what set of signal to the actuators will
drive the robot from its current state to a desired final
state with a minimum cost?. This problem can be stated
as follows:

subject to

2 + = Tk(x', U')

p i n < U < u-x

= E'x" + G'u + d' k = 1, ..., N (1 1)
(12)

(13)
where eqn. 10 represents the objective function to be
minimised, eqn. 1 1 the discrete dynamics of the robot,
eqn. 12 the torque constraints and eqn. 13 two points
boundary values with xo initial point and xed final point.
Here, the functions F' are the real valued 'single-stage'
objective functions, and Tk are discrete time state tran-
sition functions. They are twice continuously differentia-
ble. This is a nonlinear constrained optimisation
problem. Lagrangian and penalty methods are pro-
cedures for approximating constrained optimisation
problems by unconstrained ones:

xO = x i , x N + 1 = Xend

= c Piu')}

subject to

x k + l = Tk(xk, U')

(14)

where ulr u2 are Lagrange multipliers and p is a penalty
parameter. The Lagrange multiplier can be updated by
the projection of the gradient of the objective function
onto the tangent subspace at U [7, pp. 257-2591. The
penalty parameter p can be chosen arbitrarily (e.g. 10,
100, lOOO), depending on the desired precision.

The differential dynamic programming method being
an initial value unconstrained optimisation technique
may be applied to eqn. 14. The resolution method is pre-
sented in the following section.

= E'x' + G'd + d' k = 1, _.., N
xo = xi

3 Resolution

3.1 Differential dynamic programming
This Section introduces an extremely promising decen-
tralised differential dynamic programming algorithm for
robotic discrete-time optimal control problems [SI. For
such problems, existing dynamic programming algo-
rithms include the state increment dynamic programming
[8] and the gradient method [SI. All of these methods
share the property that they do not require a dis-
cretisation of the state-space. However, these two
methods converge only at a linear rate.

Differential dynamic programming is a stagewise
implementation of nonlinear programming and is tail-
ored for nonlinear discrete time optimal control prob-
lems. It was introduced in Reference 10 as a stagewise
successive approximation method for initial value prob-
lems. The solution of a nonlinear optimum control
problem is approximated by forming a sequence of
control laws on the basis of the dynamic programming
technique. Given a nominal control ud (a nonoptimal
initial policy), each iteration of the differential dynamic
programming consists of two phases: a backward run
and a forward run. The analogous phases in conventional

IEE PROCEEDINGS-D, Vol. 138, No . 6, NOVEMBER I991 510

I nonlinear programming algorithms [7, 91 are the direc-
tion finding step and the line search step, respectively. In
the backward run, stagewise value functions (return at
each stage plus the cumulative return from succeeding
stages) are given by a quadratic. Based on these func-
tions, the forward run generates a successor control
u+[11]. The nominal control, successor control and the
previous control are designated by

ud = (U", . . . , U 3

U + = (U : , . . . , u.')

U - = (UT, ..., U,) (15)

respectively. Similarly, the corresponding state trajectory
will be denoted by

xd = (x", . . . , Xf)

x + = (x : , ..., x.')

x - = (X ; ,... , X ,) (16)
The backward run begins at the last stage, denoted N .
Here we use notation like dxk to denote perturbations
about the nominal values. Thus

(17)
At any stage k, we will give the value function, i.e. return
due to stage k plus the cumulative return from succeeding
stages, by a quadratic function denoted Vk(dxk). The
backward run is initialised by putting V N + ' (d x N + ') = 0.
For stages k = N, .. ., 1, the quadratic value function
Vk(dxk) is obtained recursively. This construction is
described next.

Let V k + ' (d x k f ') be given. Because V k + ' : R 2 + R is a
quadratic function, it may be represented as

dx' = xk - xd'

V k + l (d x k + l) = j k + l + (ck+l)T(dxk+l)

+ 0.5(dxk+')TQk+'(dxk+1) (18)

T k (X k , uk) - X d (19)

Recall that
dxk+l = x k + l - X d k + l =

Hence the value function at stage k (return at stage k plus
the value function at stage k + 1) is given by:

Sk(xk, t ik) = Fk(uk) + V k + ' (d x k + ') (20)
The quadratic function Sk can be written as:

Sk(xk, U') = 0.5~" + J"' + (ck+')'(dxk+')

+ 0.5(dxk+ ')TQk+ ' (d x k + ')

+ Ut'(- uk + uk "i")

+ u y (u k - Uk W X) (21)
Using first-order necessary conditions for an extremum
of Sk, one obtains the strategy:

(22)

(23)

duk = ak + 8' dxk

ak = -(I + G ~ ~ Q ~ + ~ G ~) - ' (v , s ~ ')

where

and

pk = - (1 + Gk'Qk+'Gk)-'(V,Sd)TQk+l(Vx Td)T (24)
V , , V , denote, respectively, the gradient with respect to U

and x .
Substituting eqn. 22 into eqn. 21 we define

Vk(dxk) = J' + (ck)Tdxk + O.S(dxk)'Qkdxk (25)

IEE PROCEEDINGS-D, Vol. 138, No. 6 , NOVEMBER I991

where

J k = Sdk + BkVu S*U'
ck = v, Sdk + pkv. s"

(26)

(27)

(28) Qk = EkTQk+ 1Ek + BkGkT k + 1 k Q G
with the gradients (row vectors) given by

VISk = ET(ck+' + Qk+'(Exk + Gkuk + dk - x")) (29)
and

V,Sk = U + GkT(ck+' + Qk+'(Exk + G'uk + dk - xdk))

- U; + U: (30)
This completes the computation of the backward run for
stage k. Because eqn. 25 has the same form as eqn. 18,
computations for stage k - 1 may now begin. This pro-
cedure continues until we obtain du' (eqn. 22) for stage
k = 1. At this point, the backward run of a differential
dynamic programming iteration is complete.

The forward run computes the successor differential
dynamic programming control. Because x' is fixed,
setting dx' = 0 yields du' = a' or U ' + = ud' + du'. Next,
we recursively compute

X + t = ~ k - l (~ + ~ - I , u + k - l)

duk = U' + Bk dxk (31)
These forward run computations are standard for differ-
ential dynamic programming, such a strategy does not
ensure global convergence. Hence, to ensure global con-
vergence, some line search scheme is necessary. Towards
this end, let p > 0 and define

duk@) = pa Ir + B' dxk (32)
Initially, p is set to 1 (in relation with the Newton
method). If we find that

W@)) - U U - 1 < CP (33)
where c is a constant, then u(p) is accepted as the suc-
cessor policy and replaces U - in the next iteration. Other-
wise, p is redefined to be one half its former value and the
policy U@) is again computed. This process of having p
and testing u(p) continues until acceptance occurs. Most
times, p = 1. Other techniques of computing the step-
length are available as the Goldstein's or Armijo's rule
u11.

The description of the backward run and the forward
run is now complete. For stability, the function should
always be decreasing (see Table 1). The algorithm con-
verges quadratically because all the functions involved
are convex [lo, 111.

3.2 Regulator design
This method allows the design of a proportional-
derivative regulator eqn. 22 to 24 and 32

(34) U = U* + K,(q - q*) + K,(q' - q'*)

where the proportional and derivative gains matrices are
given by

(K , , K J T = -B (35)

K , = diag (K ,) and K O = diag (K,) (36)

with

The coefficients q*, q'* and U* are the solutions obtained
by the differential dynamic programming method.

511

Table 1

Recursion Value L(u) p Difference
number x10 L(U(P)) - L(u)

1 29879.89 1 -
2 9987.672 1 19892.22
3 4736.469 1 5251.203
4 3195.438 1 1541,031
5 2574.639 1 620.799
6 2525.727 1 48.912
7 2521.012 1 4.71 5
8 2519.024 1 1.988
9 2518.122 1 0.902
10 2517.694 1 0.428
1 1 2517.485 1 0.209
12 2517.382 1 0.103
13 2517.332 0.5 0.05
14 2517.306 1 0.026
15 2517.293 1 0.01 3
16 2517.287 0.5 0.006
17 2517.284 0.5 0.003

.lo

0 5-

E 0 4 -

2 0 3 -

C‘
B

0
a

7 0 2 -
0,
E 0 1 -
r

These regulator parameters may consist of trigono-
metrical elements, but their evolution is very smooth, so
these terms can be approximated by simple functions.
This step is robot-dependent. Each term of B (2n in all)
may be plotted against the normalised time T :

T = t / tSi ,

t is the current time and tsim the simulation time.

7, 13 and 14):
In general, linear interpolation is sufficient (see Fig. 6,

(37)
where the coefficients 6 and y are computed as follows:
Let K : and Kk be, respectively, the values of the pro-
portional gains at the beginning and the end of the off-
line simulation, then

K,? = air + y i

6 = K ; y = (K : - K:) (38)
The same computations are done for the derivative gains.
The parameters 6 and y are computed oftline. Online, it
will suffice to calculate eqn. 37. The term a (see Fig. 8)
depends strongly on the initial choice of Q and c. The
term U* represents the desired torques: solution of the
optimisation problem eqns. 1&13 (see Figs. 5 and 1 l), q*
and 4’* the corresponding joint position and velocity.
They can be stored, then used online as reference trajec-
tories.

4 Simulation results

This Section presents the application of the described
method to the Cartesian manipulator presented in Fig. 1

manipulator, to obtain comprehensive information about
the tracking capabilities of this technique, the algorithm
has been evaluated over two different operational
environments. The choice of these parameters is made
arbitrary for the sake of numerical demonstration.

Fig. 2 Configuration oJMA23 manipulator

4.1 Small amplitude
qo = (0.1, 0.1, 0.1) and qeoal = (0.5, 0.5, 0.5) m, simulation
time 0.4 s. The bounds on the control input are assumed
to be - 100 N < U < 100 N. The mass of the third axis
and the load is 4 Kg.

To show the importance of the sampling rate, four dif-
ferent experiments were done: 6t = 2.5, 10, 20 and 50 ms.
Figs. 3, 4 and 5 show, respectively, the third joint posi-

- o z 0 2 0 3 O L
0 0 1

time, s
Fig. 3
manipulator

Third joint position JOT different sampling periods: Cartesian

2 Or

‘,I 6 -

1 2 -
L 1 0 -

0 6 -

0

0 2 -
0 0 ,

C 103
tlme, s

Fig. 4
manioulator

Third joint velocity for different sampling periods: cartesian

1
OCl 4,

Fig. 1 Configuration oJcartesian manipulator

and the MA23 robot arm presented in Fig. 2. Numerous
numerical simulations are illustrated here to test the effi-
ciency of the proposed control scheme. For the Cartesian

512

tion, velocity and torque, for these sampling rates. For
6t = 2.5 and 10 ms see curve 1, for 6t = 25 ms see curve 2
and for 6t = 50 ms, see curve 3. Sampling extracts a
discrete-time signal from a continuous time one. The
sampling frequency must be selected properly to permit
accurate representation of the assigned signal by the
resulting sample sequence. Experiments seem to indicate

IEE PROCEEDINGS-D, Vol. 138, No. 6, NOVEMBER 1991

that the choice of the sampling rate should be no less
than 60 Hz (T < 11 ms) to achieve a sufficiently smooth
control for most motions. In the following, the sampling
period chosen is St = 10 ms.

g 2000-
-
0
c
?

0,

-
L

1000-

100

p 20

; -20 time, s

3

-60

-100
Fig. 5
manipulator

Third joint torque for diferent sampling periods: Cartesian

100 -
a0 -

LO - 1 2 2

60 -

20 -

Fig. 9 gives the norm of the error between the opti-
misation problem solution x* and real position x in car-
tesian space, respectively, of tests 1 to 3.

1

E -
0

time. s

Fig. 9
ulator

Position error against time for different loads: Cartesian manip-

0 -

-20
0 2 0 3 3 0 4 0 1

- time, s

0 0 1 0 2 0 3 O L
01

t i m e , s

Fig. 6 Proportional gains against time: Cartesian manipulator

501

01
0 0 1 0 2 0 3 0 4

time, s
Derivative gains against time: Cartesian manipulator Fig. 7

-LO -..i - 80
-100

Fig. 8 Alpha term against time: Cartesian manipulator

Figs. 6 and 7 give the evolution of the regulator gains
against the time for the three joints. It can be seen that
the evolution is linear. Fig. 8 shows the evolution of the a
term, for the three joints.

IEE PROCEEDINGS-D, Vol. 138, No. 6, NOVEMBER 1991

0 02 O L 0 6 0 8

time,s

Fig. 10
tor

Third joint position for large amphtude: Cartesian monipula-

time, s

-1ooL
Fig. 11 Third joint torque for large amplitude: Cartesian manipulator

Fig. 12 Position error against time: Cartesian manipulator

513

test 1* When the nominal mass of the third axis and
the load is exactly estimated (ms = 4 Kg).

test 2* When the nominal mass of the third axis and
the load is overestimated by 50% with respect to the
assigned mass (m3 = 2 Kg).

300 1 2

El 200
m

3

0 I
0 0 1 0 2 0 3 01.

Proportional gains against time: MA23 manipulator

time, s

Fig. 13

2

m
F I
2 1 $ 10 1

3
0
0 0 1 0 2 0 3 0 6

time, s

Derivative gains against time: MA23 manipulator Fig. 14

test 3* When the nominal mass of the third axis and
the load is underestimated by 50% with respect to the
assigned mass (m3 = 6 Kg).

The nominal values were used in the computation of
the nonlinear feedback U* and the parameter gains K ,
and K , (solution of the optimisation problem). The
assigned values were used in the computations implemen-
tation of the robot arm. The robustness of this new
control strategy is well illustrated by these figures. There
is a static error: a classical result for a proportional
derivative regulator. Table 1 gives the successive results
for test 1 when the differential dynamic programming
method is applied to the solution of problem (eqns.
1G13).

4.2 Large amplitude
qo = (0.1, 0.1, 0.1) m and qgoa, = (1, 1,l) m, simulation
time 0.8 s. The bounds on the control input are assumed
to be: -75N < U < 75 N.

Figs. 10, 11 and 12 give, respectively, the evolution of
the third joint position, torque and position error norm.
Figs. 5 and 11 show that the motor torques limits are
never exceeded. Figs. 13 and 14 show, respectively, the
evolution of the proportional and derivative gains
against time, for a three rotate joints manipulator: the
MA23 robot: xo = (0.1, 0.1, 0.1) rad and qgoal = (0.5, 0.5,
0.5) rad. The motor torques limits are
- 100 Nm < U < 100 Nm. The gains evolution is still

linear. The position, velocity and torque evolution is
similar to the Cartesian manipulator one.

Other simulation results have also shown that a suit-
able selection of the initial conditions (choice of QN”
and cNfl) in computing the feedback gains also plays an
important role in reducing position and velocity errors in
tracking the desired path x*. The main simulation result
is that there is a smooth positioning, never exceeding the
motor torques limits.

5 Conclusions

The problem considered first is an energy minimisation
problem with given dynamics and subject to the actuator
constraints. This resolution cannot take place online, the
operations involved being too numerous. However, this
method has an important advantage. It allows the design
of a proportional derivative regulator with gains deter-
mination done by the differential dynamic programming
method, as well as the calculation of reference trajec-
tories. The same method may be used for the design of a
PID regulator with slight changes in the space vector.

This regulator is designed from the solution of an
optimisation problem which takes care of the real physi-
cal constraints on the manipulators: the applied torques
at the joints. This is an important result since real con-
straints are introduced in the calculation of the gain
parameters, and the planning of the desired positions and
velocities.

The recursive algorithm used in the proposed control
scheme requires only a small amount of memory space
(U*, q*. q‘*), the mathematical operations are simple and
fast to compute. Simulation studies on the manipulator
systems have been presented to demonstrate the applica-
bility of the control scheme.

It should be noted that the energy minimum controller
studied in this paper is concerned only with free space
motion.

6 References

1 KAHN, M.E., and ROTH, B.: ‘The near minimum-time control of
own-loop articulated kinematics chains’. J . Dynamic Svst. Meas. &
Control, i m , pp. 164-172

2 KIM, B.K., and SHIN, K.G.: ‘Suboptimal control of industrial
manipulators with a weighted minimum-time fuel criterion’, IEEE
Trans., 1985, AC-30, pp. 213-223

3 ABOU KANDIL, H., DROUIN, M. and BERTRAND, P.: ‘Two-
level control laws for discrete-time nonlinear svstems’. Proceedines
of the American Control Conference, 1984, pp. i4931497

4 BESTAOUI, Y.: ‘Adaptive hierarchical control for robotic manipu-
lators’, Robotics & Autonomous Systems, 1988,4, pp. 145-155

5 LIU, M.H., WEI, L., and HUANG, J.F.: ‘Pole assignment self-
tuning control of robotic manipulators’. Proceedings 16th Inter-
national Symposium on Industrial Robots, UK, 1986, pp. 28S297

6 NICOSIA, S., and TOMEI, P.: ‘A discrete-time MRAS control for
industrial robot’. Proceedings IFAC Symposium, 1985, pp. 8 S 8 9

7 LUENBERGER, D.G.: ‘Introduction to linear and nonlinear pro-
gramming’ (Addison-Wesley, 1973)

8 YAKOWITZ, S.J.: ‘Convergence rate analysis of the state-increment
dynamic programming method‘, Automatica, 1983, 19, (1). pp. 53-60

9 McCORMICK, G.P.: ‘Nonlinear programming’ (J. Wiley, 1983)
10 YAKOWITZ, S., and RUTHERFORD, B . : ‘Computational aspects

of discrete-time optimal control‘, Applied Math. & Comput., 1984,
15, pp. 2 9 4 5

1 1 SEN, S., and YAKOWITZ, S.J.: ‘A quasi-Newton differential
dynamic programming algorithm for discrete-time optimal control’,
Aucomatica, 1987,23, (6). pp. 749-752

514 IEE PROCEEDINGS-D. Vol. 138, NO. 6, NOVEMBER 1991

