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Abstract: The optimal control of manipulators is 
a key to the success of automated manufacturing. 
The problem considered here is an energy mini- 
misation problem with given dynamics and is 
subject to actuator constraints. A differential 
dynamic programming algorithm is developed to 
solve the discrete-time optimal control problem. 
This method allows calculation of the joint refer- 
ence trajectories and the design of a proportional 
derivative regulator. The characteristics of this 
new method are exposed and the simulation 
results shown. 

1 Introduction 

The current generation of manipulators can complete a 
typical positioning task in seconds. The most frequent 
task is to transfer the system state from one bounded 
region of initial states into another bounded region in the 
state space within a finite settling time. The system state 
should belong to a bounded region in the state space 
during the transfer. A better manipulator performance 
can be achieved by improving their mechanical construc- 
tion and by using more effective controllers. In this 
paper, we are only concerned with the latter. The optimal 
control of manipulators is a key to the success of 
automated manufacturing. It is therefore essential to 
design an optimal manipulator system with a suitable 
performance criterion which is consistent with the fore- 
going goals. 

In many cases, manipulators are desired to move from 
one point to another using as little energy as possible. 
Consequently, it is important to design an efficient con- 
troller which requires less energy, thus pushing the 
manipulators to be operated at their maximum efficiency. 
This consideration naturally leads to a constrained 
optimal control problem of robotic manipulators with a 
minimum energy criterion. 

The industrial robot is highly nonlinear, which is one 
of the reasons that makes optimum control a difficult 

minimum time solution along an operational point, using 
a linearised continuous model, which represents a gross 
simplification. There has also been much interest in the 
development of hierarchical algorithms [3,4]. 

This paper presents a control design methodology for 
robotic manipulators considered as discrete-time systems. 
The dynamics of the system are then represented as an 
augmented equation composed of the states of the 
system, interconnected dynamics and constraints on the 
control variables. The design of a manipulator feedback 
control system on the basis of the minimum energy cri- 
terion, is presented. This controller provides a feedback 
control algorithm with a simple updating structure so 
that it can be implemented in real time on mini or micro- 
computers. Primarily, this controller is intended to 
provide fast operation speed using less energy and with 
reasonable setting accuracy. 

2 Problem formulation 

For a manipulator with n joints, the dynamic model can 
be expressed using a Lagrangian equation as: 

W q ”  + 4, 4’) + g(4) = 4) (1) 

where the n x 1 vectors q, q’ and q” are, respectively, the 
joint position, joint velocity and joint acceleration, the 
n x 1 vector u(t) is the joint input torque, g(q) is the n x 1 
gravitational force vector, h(q, q‘) is the n x 1 Coriolis 
and centrifugal force vector and D(q) is the n x n inertial 
matrix. The inputs in the model are the forces/torques, 
and the outputs are selected as the positions and the 
velocities of the manipulator joints. 

A 2n x 1 state vector of the manipulator system can 
be defined as: 

where T denotes the transpose. From eqn. 1, the state- 
space description of the system [S, 61 can be given by: 

(3) 
problem. A second reason is the strict constraints 
imposed on the system. Because of the difficulty, few x‘(t) + B(x(t))u(t) + c(x(t)) 

authors [l, 23 have attempted to minimise the time or 
quadratic performance index. When such problems are 
tackled by the maximum principle, nonlinear two points 
boundary value problems appear and may be solved 
using several successive appproximation methods [2]. 
For example, Kahn and Roth [l] investigate the 

where 

A = [ :  ‘a] 
0 

~ ( ~ ( t ) )  = [D-l(qd 
C(x(t)) = [ 1 0 Paper 8220D (C8, CIS), received 9th November 1990 
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with I, the n x n identity matrix. The pair (A, B) is con- 
trollable [SI. The state-space model reflects the fact that 
robots are variable-inertia mechanical systems. 

When a robot is under computer-control, the inputs 
u(t) are updated at each sampling instant and maintained 
constant by digital to analogue convertors (DAC). The 
DAC are the interfaces between the digital controller and 
the robot: 

u(t) = u(kt) = U' for kT < t < (k  + l ) T  (5) 
The natural (continuous-time) state variables of the robot 
are the joint co-ordinates and velocities (4 and 4'). These 
physical state-variables are accessible and can be meas- 
ured directly with currently available instrumentation. 
The analogue to digital convertors (ADC) sample the 
state variables at each sampling instant to produce the 
piecewise constant states of the robot: 

q(t) = 4(kT) = 4' for kT d t < (k  + l ) T  

q'(t) = q'(kT) = 4" for kT Q t < (k + l )T  

Considering that the manipulator is controlled by a com- 
puter, eqn. 3 needs to be discretised. Setting T as the 
sampling period and noticing that u(t) is constant in the 
interval of time (kT, kT + T), the discretised state model 
can be expressed as : 

x!+' = xf + Txr+, for 1 < i < n (6) 
x;+' = X! + T(D')-'u' + T(-(D')-'(h' + g')) 

for (n + 1) < i d 2n (7) 

in which we denote the value of the generic functionf(t) 
at the instant t = kT withy' 

We can set: 

E'x' + G'u' + d' (8) x k + l  = 

where 

E'= [k yn] (9) 

G' = TB' 

d' = TC' 

The dynamic control of an industrial manipulator 
involves the determination of the inputs for the actuators 
which operate at the joints so that the set of desired 
values for the positions and velocities of the manipulator 
is achieved. 

In the feedforward control stage, the driving forces/ 
torques generated by the planner are realised in the 
active region of the actuators. This control design is 
accomplished by placing limits on the maximum driving 
forces/torques and restricting the actuator outputs to lie 
within these limits. For this task, optimal control 
approaches can be formulated by augmenting the discrete 
dynamic robot model with discrete performance criteria. 
Application of mathematical and dynamic programming 
can then lead to an optimal feedforward controller. 

A generalised version of the statement of the problem 
is 'Given the robot's dynamic properties and the robot 
characteristics, what set of signal to the actuators will 
drive the robot from its current state to a desired final 
state with a minimum cost?. This problem can be stated 
as follows: 

subject to 

2 + = Tk(x', U') 

p i n  < U < u-x 

= E'x" + G'u + d' k = 1, ..., N (1 1) 
(12) 

(13) 
where eqn. 10 represents the objective function to be 
minimised, eqn. 1 1  the discrete dynamics of the robot, 
eqn. 12 the torque constraints and eqn. 13 two points 
boundary values with xo initial point and xed final point. 
Here, the functions F' are the real valued 'single-stage' 
objective functions, and Tk are discrete time state tran- 
sition functions. They are twice continuously differentia- 
ble. This is a nonlinear constrained optimisation 
problem. Lagrangian and penalty methods are pro- 
cedures for approximating constrained optimisation 
problems by unconstrained ones: 

xO = x i ,  x N +  1 = Xend 

= c Piu')} 

subject to 

x k + l  = Tk(xk, U') 

(14) 

where ulr  u2 are Lagrange multipliers and p is a penalty 
parameter. The Lagrange multiplier can be updated by 
the projection of the gradient of the objective function 
onto the tangent subspace at U [7, pp. 257-2591. The 
penalty parameter p can be chosen arbitrarily (e.g. 10, 
100, lOOO), depending on the desired precision. 

The differential dynamic programming method being 
an initial value unconstrained optimisation technique 
may be applied to eqn. 14. The resolution method is pre- 
sented in the following section. 

= E'x' + G'd + d' k = 1, _.., N 
xo = xi 

3 Resolution 

3.1 Differential dynamic programming 
This Section introduces an extremely promising decen- 
tralised differential dynamic programming algorithm for 
robotic discrete-time optimal control problems [SI. For 
such problems, existing dynamic programming algo- 
rithms include the state increment dynamic programming 
[8] and the gradient method [SI. All of these methods 
share the property that they do not require a dis- 
cretisation of the state-space. However, these two 
methods converge only at a linear rate. 

Differential dynamic programming is a stagewise 
implementation of nonlinear programming and is tail- 
ored for nonlinear discrete time optimal control prob- 
lems. It was introduced in Reference 10 as a stagewise 
successive approximation method for initial value prob- 
lems. The solution of a nonlinear optimum control 
problem is approximated by forming a sequence of 
control laws on the basis of the dynamic programming 
technique. Given a nominal control ud (a nonoptimal 
initial policy), each iteration of the differential dynamic 
programming consists of two phases: a backward run 
and a forward run. The analogous phases in conventional 
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I nonlinear programming algorithms [7, 91 are the direc- 
tion finding step and the line search step, respectively. In 
the backward run, stagewise value functions (return at 
each stage plus the cumulative return from succeeding 
stages) are given by a quadratic. Based on these func- 
tions, the forward run generates a successor control 
u+[11]. The nominal control, successor control and the 
previous control are designated by 

ud = (U", . . . , U 3  

U +  = (U : ,  . . . , u.') 

U -  = (UT, ..., U,) (15) 

respectively. Similarly, the corresponding state trajectory 
will be denoted by 

xd = (x", . . . , Xf) 

x +  = ( x : ,  ..., x.') 

x -  = ( X ;  ,... , X , )  (16) 
The backward run begins at the last stage, denoted N .  
Here we use notation like dxk to denote perturbations 
about the nominal values. Thus 

(17) 
At any stage k, we will give the value function, i.e. return 
due to stage k plus the cumulative return from succeeding 
stages, by a quadratic function denoted Vk(dxk).  The 
backward run is initialised by putting V N + ' ( d x N + ' )  = 0. 
For stages k = N, .. ., 1, the quadratic value function 
Vk(dxk) is obtained recursively. This construction is 
described next. 

Let V k + ' ( d x k f ' )  be given. Because V k + ' :  R 2  + R is a 
quadratic function, it may be represented as 

dx' = xk - xd' 

V k + l ( d x k + l )  = j k + l  + (ck+l)T(dxk+l) 

+ 0.5(dxk+')TQk+'(dxk+1)  (18) 

T k ( X k ,  uk) - X d  (19) 

Recall that 
dxk+l  = x k + l  - X d k + l  = 

Hence the value function at stage k (return at stage k plus 
the value function at stage k + 1) is given by: 

Sk(xk, t ik )  = Fk(uk) + V k + ' ( d x k + ' )  (20) 
The quadratic function Sk can be written as: 

Sk(xk, U') = 0.5~"  + J"' + (ck+')'(dxk+') 

+ 0.5(dxk+ ' )TQk+ ' ( d x k +  ') 

+ Ut'( - uk + uk "i") 

+ u y ( u k  - Uk W X )  (21) 
Using first-order necessary conditions for an extremum 
of Sk, one obtains the strategy: 

(22) 

(23) 

duk = ak + 8' dxk 

ak = -(I + G ~ ~ Q ~ + ~ G ~ ) - ' ( v , s ~ ' )  

where 

and 

pk = - (1 + Gk'Qk+'Gk)-'(V,Sd)TQk+l(Vx Td)T (24) 
V , ,  V ,  denote, respectively, the gradient with respect to U 

and x .  
Substituting eqn. 22 into eqn. 21 we define 

Vk(dxk)  = J' + (ck)Tdxk + O.S(dxk)'Qkdxk (25) 
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where 

J k  = Sdk + BkVu S*U' 
ck = v, Sdk + pkv. s" 

(26) 

(27) 

(28) Qk = EkTQk+ 1Ek + BkGkT k +  1 k Q G  
with the gradients (row vectors) given by 

VISk = ET(ck+' + Qk+'(Exk + Gkuk + dk - x")) (29) 
and 

V,Sk = U + GkT(ck+' + Qk+'(Exk + G'uk + dk - xdk)) 

- U; + U: (30) 
This completes the computation of the backward run for 
stage k. Because eqn. 25 has the same form as eqn. 18, 
computations for stage k - 1 may now begin. This pro- 
cedure continues until we obtain du' (eqn. 22) for stage 
k = 1. At this point, the backward run of a differential 
dynamic programming iteration is complete. 

The forward run computes the successor differential 
dynamic programming control. Because x' is fixed, 
setting dx' = 0 yields du' = a' or U ' +  = ud' + du'. Next, 
we recursively compute 

X + t  = ~ k - l ( ~ + ~ - I ,  u + k - l )  

duk = U' + Bk dxk (31) 
These forward run computations are standard for differ- 
ential dynamic programming, such a strategy does not 
ensure global convergence. Hence, to ensure global con- 
vergence, some line search scheme is necessary. Towards 
this end, let p > 0 and define 

duk@) = pa Ir + B' dxk (32) 
Initially, p is set to 1 (in relation with the Newton 
method). If we find that 

W@)) - U U  - 1 < CP (33) 
where c is a constant, then u(p) is accepted as the suc- 
cessor policy and replaces U -  in the next iteration. Other- 
wise, p is redefined to be one half its former value and the 
policy U@) is again computed. This process of having p 
and testing u(p) continues until acceptance occurs. Most 
times, p = 1. Other techniques of computing the step- 
length are available as the Goldstein's or Armijo's rule 
u11. 

The description of the backward run and the forward 
run is now complete. For stability, the function should 
always be decreasing (see Table 1). The algorithm con- 
verges quadratically because all the functions involved 
are convex [lo, 111. 

3.2 Regulator design 
This method allows the design of a proportional- 
derivative regulator eqn. 22 to 24 and 32 

(34) U = U* + K,(q - q*)  + K,(q' - q'*) 

where the proportional and derivative gains matrices are 
given by 

( K , ,  K J T  = -B (35) 

K ,  = diag ( K , )  and K O  = diag (K,)  (36) 

with 

The coefficients q*, q'* and U* are the solutions obtained 
by the differential dynamic programming method. 
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Table 1 

Recursion Value L(u)  p Difference 
number x10 L(U(P) )  - L(u)  

1 29879.89 1 - 
2 9987.672 1 19892.22 
3 4736.469 1 5251.203 
4 3195.438 1 1541,031 
5 2574.639 1 620.799 
6 2525.727 1 48.912 
7 2521.012 1 4.71 5 
8 2519.024 1 1.988 
9 2518.122 1 0.902 
10 2517.694 1 0.428 
1 1  2517.485 1 0.209 
12 2517.382 1 0.103 
13 2517.332 0.5 0.05 
14 2517.306 1 0.026 
15 2517.293 1 0.01 3 
16 2517.287 0.5 0.006 
17 2517.284 0.5 0.003 

.lo 

0 5- 

E 0 4 -  

2 0 3 -  

C‘ 
B 

0 
a 

7 0 2 -  
0, 
E 0 1 -  
r 

These regulator parameters may consist of trigono- 
metrical elements, but their evolution is very smooth, so 
these terms can be approximated by simple functions. 
This step is robot-dependent. Each term of B (2n in all) 
may be plotted against the normalised time T :  

T = t / tSi ,  

t is the current time and tsim the simulation time. 

7, 13 and 14): 
In general, linear interpolation is sufficient (see Fig. 6, 

(37) 
where the coefficients 6 and y are computed as follows: 
Let K :  and Kk be, respectively, the values of the pro- 
portional gains at the beginning and the end of the off- 
line simulation, then 

K,? = air  + y i  

6 = K ;  y = ( K :  - K:)  (38) 
The same computations are done for the derivative gains. 
The parameters 6 and y are computed oftline. Online, it 
will suffice to calculate eqn. 37. The term a (see Fig. 8) 
depends strongly on the initial choice of Q and c. The 
term U* represents the desired torques: solution of the 
optimisation problem eqns. 1&13 (see Figs. 5 and 1 l), q* 
and 4’* the corresponding joint position and velocity. 
They can be stored, then used online as reference trajec- 
tories. 

4 Simulation results 

This Section presents the application of the described 
method to the Cartesian manipulator presented in Fig. 1 

manipulator, to obtain comprehensive information about 
the tracking capabilities of this technique, the algorithm 
has been evaluated over two different operational 
environments. The choice of these parameters is made 
arbitrary for the sake of numerical demonstration. 

Fig. 2 Configuration oJMA23 manipulator 

4.1 Small amplitude 
qo = (0.1, 0.1, 0.1) and qeoal = (0.5, 0.5, 0.5) m, simulation 
time 0.4 s. The bounds on the control input are assumed 
to be - 100 N < U < 100 N. The mass of the third axis 
and the load is 4 Kg. 

To show the importance of the sampling rate, four dif- 
ferent experiments were done: 6t = 2.5, 10, 20 and 50 ms. 
Figs. 3, 4 and 5 show, respectively, the third joint posi- 

- o z  0 2  0 3  O L  
0 0 1  

time, s 
Fig. 3 
manipulator 

Third joint position JOT different sampling periods: Cartesian 

2 Or 

‘,I 6 -  

1 2 -  
L 1 0 -  

0 6 -  

0 

0 2 -  
0 0 ,  

C 103 
tlme, s 

Fig. 4 
manioulator 

Third joint velocity for different sampling periods: cartesian 

1 
OCl 4, 

Fig. 1 Configuration oJcartesian manipulator 

and the MA23 robot arm presented in Fig. 2. Numerous 
numerical simulations are illustrated here to test the effi- 
ciency of the proposed control scheme. For the Cartesian 

512 

tion, velocity and torque, for these sampling rates. For 
6t = 2.5 and 10 ms see curve 1, for 6t = 25 ms see curve 2 
and for 6t = 50 ms, see curve 3. Sampling extracts a 
discrete-time signal from a continuous time one. The 
sampling frequency must be selected properly to permit 
accurate representation of the assigned signal by the 
resulting sample sequence. Experiments seem to indicate 
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that the choice of the sampling rate should be no less 
than 60 Hz (T < 11 ms) to achieve a sufficiently smooth 
control for most motions. In the following, the sampling 
period chosen is St = 10 ms. 

g 2000- 
- 
0 
c 
? 

0, 

- 
L 

1000- 

100 

p 20 

; -20 time, s 

3 

-60 

-100 
Fig. 5 
manipulator 

Third joint torque for diferent sampling periods: Cartesian 

100 - 
a0 - 

LO - 1 2 2  

60 - 

20 - 

Fig. 9 gives the norm of the error between the opti- 
misation problem solution x* and real position x in car- 
tesian space, respectively, of tests 1 to 3. 

1 

E - 
0 

time. s 

Fig. 9 
ulator 

Position error against time for  different loads: Cartesian manip- 

0 -  

-20 
0 2  0 3  3 0 4  0 1  

- time, s 

0 0 1  0 2  0 3  O L  
01 

t i m e , s  

Fig. 6 Proportional gains against time: Cartesian manipulator 
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01 
0 0 1  0 2  0 3  0 4  

time, s 
Derivative gains against time: Cartesian manipulator Fig. 7 

-LO -..i - 80 
-100 

Fig. 8 Alpha term against time: Cartesian manipulator 

Figs. 6 and 7 give the evolution of the regulator gains 
against the time for the three joints. It can be seen that 
the evolution is linear. Fig. 8 shows the evolution of the a 
term, for the three joints. 
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time,s 

Fig. 10 
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Third joint position for large amphtude: Cartesian monipula- 

time, s 

-1ooL 
Fig. 11 Third joint torque for large amplitude: Cartesian manipulator 

Fig. 12 Position error against time: Cartesian manipulator 
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test 1* When the nominal mass of the third axis and 
the load is exactly estimated (ms = 4 Kg). 

test 2* When the nominal mass of the third axis and 
the load is overestimated by 50% with respect to the 
assigned mass (m3 = 2 Kg). 

300 1 2 

El 200 
m 

3 

0 I 
0 0 1  0 2  0 3  01. 

Proportional gains against time: MA23 manipulator 

time, s 

Fig. 13 

2 

m 
F I  
2 1  $ 10 1 

3 
0 
0 0 1  0 2  0 3  0 6  

time, s 

Derivative gains against time: MA23 manipulator Fig. 14 

test 3* When the nominal mass of the third axis and 
the load is underestimated by 50% with respect to the 
assigned mass (m3 = 6 Kg). 

The nominal values were used in the computation of 
the nonlinear feedback U* and the parameter gains K ,  
and K ,  (solution of the optimisation problem). The 
assigned values were used in the computations implemen- 
tation of the robot arm. The robustness of this new 
control strategy is well illustrated by these figures. There 
is a static error: a classical result for a proportional 
derivative regulator. Table 1 gives the successive results 
for test 1 when the differential dynamic programming 
method is applied to the solution of problem (eqns. 
1G13). 

4.2 Large amplitude 
qo = (0.1, 0.1, 0.1) m and qgoa, = (1, 1,l) m, simulation 
time 0.8 s. The bounds on the control input are assumed 
to be: -75N < U < 75 N. 

Figs. 10, 11 and 12 give, respectively, the evolution of 
the third joint position, torque and position error norm. 
Figs. 5 and 11 show that the motor torques limits are 
never exceeded. Figs. 13 and 14 show, respectively, the 
evolution of the proportional and derivative gains 
against time, for a three rotate joints manipulator: the 
MA23 robot: xo = (0.1, 0.1, 0.1) rad and qgoal = (0.5, 0.5, 
0.5) rad. The motor torques limits are 
- 100 Nm < U < 100 Nm. The gains evolution is still 

linear. The position, velocity and torque evolution is 
similar to the Cartesian manipulator one. 

Other simulation results have also shown that a suit- 
able selection of the initial conditions (choice of QN” 
and cNfl) in computing the feedback gains also plays an 
important role in reducing position and velocity errors in 
tracking the desired path x*. The main simulation result 
is that there is a smooth positioning, never exceeding the 
motor torques limits. 

5 Conclusions 

The problem considered first is an energy minimisation 
problem with given dynamics and subject to the actuator 
constraints. This resolution cannot take place online, the 
operations involved being too numerous. However, this 
method has an important advantage. It allows the design 
of a proportional derivative regulator with gains deter- 
mination done by the differential dynamic programming 
method, as well as the calculation of reference trajec- 
tories. The same method may be used for the design of a 
PID regulator with slight changes in the space vector. 

This regulator is designed from the solution of an 
optimisation problem which takes care of the real physi- 
cal constraints on the manipulators: the applied torques 
at the joints. This is an important result since real con- 
straints are introduced in the calculation of the gain 
parameters, and the planning of the desired positions and 
velocities. 

The recursive algorithm used in the proposed control 
scheme requires only a small amount of memory space 
(U*, q*. q‘*), the mathematical operations are simple and 
fast to compute. Simulation studies on the manipulator 
systems have been presented to demonstrate the applica- 
bility of the control scheme. 

It should be noted that the energy minimum controller 
studied in this paper is concerned only with free space 
motion. 
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