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Abst rac t  
The optimal motion generation problem is solved subject 
to actuator constraints while the motion is constrained to 
an arbitrary path. The considered objective function is a 
weighted time-energy function. We present some results 
using a mathematical programming technique. 

1. Introduction 
Motion along a predefined path is common in robotics. 
The path is given from the application and a first step is to 
obtain a nominal motion specification. In this paper, the 
emphasis is put on the optimal planning of manipulators 
trajectories, in joint space. For rigid robots, the minimal 
time optimization along a predefined path can be solved 
using phase-plane techniques [6 ] .  This method, however 
cannot be extended to the case under interest with a time- 
electric energy performance index. In this paper, the 
determination of the desired robot motion as a function of 
time involves a nonlinear optimal problem. We will focus 
on manipulators actuated by DC motors which operate over 
a wide speed range and have excellent control 
characteristics. 

2. Modelling 
2.1 Manipulator Model 
For a manipulator with n joints, the dynamic model can be 
expressed using the.Lagrangian cquation as: 

where the (n,l) vectors q, q and q are the joint position, 
velocity and acceleration, the (n,l) vector r is the joint 
input torque, G is the (n,l) gravitational force vector, B is 
the (n,n,n) Coriolis and Centrifugal forcc matrix, F is the 
viscous friction and A is the (n,n) inertial matrix. 

2.2 Actuator Model 
For a non-redundant multi-degrees-of-freedom robot, there 
are usually as many actuators as the number of d-o-f. In a 
permanent magnet DC motor, the actuator dynamics, 
giving the voltage U as a function of the current I are: 

la 
I = K 1 r  and U = L ; i ; + R I + K q  
where L, R and K are square regular diagonal matrices 
representing the inductance, resistance and torque constant. 

2.3 Path Description 
The path describes the robot motion in space and is 
represented as a parameterized curve, q = q(s), where s is a 
scalar path parameter. The optimal path planning problem 
which consists in finding q(t) is then replaced by the 
optimal search of s(t) on the interval [O,T]. 

r = ~ ( q h  + b T w  4 + w + F m  (1) 

(2) 

3. Motion Generation Problem 
3.1 Introduction 
Most motion generation laws are developed based on 
kinematical constraints, obtained for the most unfavorable 
configurations. Thus, to define maximal torques, 
accelerations and velocities, we have to ncglect some 
terms of the dynamic models (1) and (2). IIowever, the 
determination of such values allows to propose simple 
motion generation laws [4]. 

3.2 Optimal Problem Formulation 
Equation (1) can be written as: 
r = A l ( s ) ~ + B l ( s ~ ' + F l ( s ~ + G ~ ( s )  (3) 
A d 4  = A ( q W  4s 
BJ(4 = q s ~ ~ C 9 f s N  %+Afq(s)) 9ss 

F10) = Fdds)) 4s 
G1(s)= G(q(s)) 

where qs and qss are the derivatives of q with respect to s. 
The capabilities of a DC motor are mainly limited by the 
heat generation and dissipation characteristics. Then the 
actuator constraint limits the torque (or force), joint speeds 
and accelerations, applied to each link. The state and 
control variables are releyent to the path parameter, and 
chosen to be x = [s, i, 6'1 and U = 6", so the differential 
equation describing the system is given by: 

0 1 0  
x = A x + B u w h e r e A =  0 0 1 d B =  

[ o  0 0 1  E1 (4) 
The optimization of the motion along a specified path can 
be stated as the following problem: 

Min J =  j I(I-aj+olu(r)lp)ldt 

k= A x + B U with the actuators limitations: 

T 

Subject to 

-1" I; I S  I- -U" 5 US U" (5) 

where Imax, Dimax and Ieffmax are respectively the 
maximum absolute values of the motor current 
instantaneous value, slew rate and square mean value and 
Umax is the maximum absolute value of the voltage 
suppIy. The parameter a is chosen by the user to give more 
or less weight to time or energy. 

4. Resolution Method 
4.1 Introduction 
In theory, any optimal control problem can be solved 
anaIyticaliy by employing Pontryagin's minimum 
principle. However, it is impracticable to do so if the state 
vector dimension is higher than two. Then optimal control 
problems should be solved numerically [I], [2].  
All of the available numerical methods first discretize the 
given continuous system with a fiied sampling period. The 
period should be small enough so that no significant 
discretization error is introduced. Since in the discrete 
domain, the number of v bles is itself a variable, this 
problem can only be considered by solving exhaustively a 
sequence of fured time problems [3]. This makes the search 
iteration count long. This paper fixes the count of steps N 
and treats the sampling period 7 as an optimization 
variable. 

4.2 Discrote Counterpart  
With a period 7 being a small constant. Euler's first order 
approximation of the time derivative of the state vector 
gives a discrete state equation Xi+l=(I+'FA)Xi+TBUi.Solving 
it. gives the state expression at general time k in terms of 
the initial state and the intermediate inputs: 

k - I  

Xk=(I  + rAjkX* + T C  ( I  Bui - (0 
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Considerind the sampling period as a variable, this 
problem is transformed into a discrete form as follows: 
X = [uo UI, ..., UN-I, r] wilh dim(X)= N+I  0) 

N-2 

The performance index: (I-a) (N-2)r + a r 2 Ui Ii 

The equality constraints: 
1-0 

N-2 

i- o 
Numerous simulations were performed using the NPSOL 
software, using a Sequential Quadratic Programming 
technique [5]. The choice of solution method will depend 
on the information available about the problem functions. 
For our concrete problem, we have given the gradients of 
the functions computed with the MAPLE software. 

5. Simulation Results 
5.1 Simulations 
The algorithm was applied to a two d-o-f robot. The 
proposed path, defined by four crossing points, 
[0.5,0.3]m, [0.2,0.5]m. [0.0,0.5]m and [0.0,0.4]m. is 
represented by parts of fifth degree s-polynomials. The 
dimension of vector X is chosen to be 201, There exists 
then 1205 constraints (i.e. 3nN+3+n). The bounds of the 
voltage and current are the different values of the robot of 
our laboratory : Umax=(30,20 V, Imax=(IO.lO)A. 

Most of the nonlinear programming algorithms require a 
feasible solution set of the optimization variables to start 
the optimization. We describe a way to deal with this 
problem. As the different solutions of general minimum- 
time problems are usually made of phases with positive and 
negative accelerations, we choose an initial solution of 
this shape for [S"klLsN-,. Moreover, experiences show that 
convergence was easier if the initial solution is continuous 
and satisfy uo=uf=O. So, we finally choose an initial 
solution XO varying from umax to -umax. The number of 
discretization points and umax are user dependable 
parameters. T is obtained such as s(T)=sf. 
The optimal times obtained respectively for the maximal 
velocity limit curve method [6] and the one we propose, are 
T=1.2s and T=l.22s. When the objective function is a 
weighted time energy function, the maximal velocity limit 
curve method cannot be used. Using our method, the final 
time for a=O.l is T=3.ls and for a=0.5 is T=5.9s. 
For a=O, the solution is bang-bang i.e. one of the current 
(torque) is always saturated, but the voltage sometimes also 
saturate (figurel). This ensures the limits on joint speeds 
and accelerations. 

5.2 Discussions 
The maximal velocity limit curve method [6] gives good 
results for simple cases. The forward and backward 
integration must be done with a very low period. 
Moreover, on a singular arc, the search must be very 
precise. The nature of possible switching points being 
very different (tangency, discontinuity and critical), the 
behaviour of the robot in these points is also very 
different. The implemcntation of the algorithm involves 
the determination of many precision parameters, 
depending on each followed path. This takes a certain 
amount of time and needs some numerical experience. 
Velocity and torques constraints are not sufficient to ensure 
a safe behavior of the robot, in some cases, this algorithm 
gives an infinite curvilinear acceleration and thus the real 
actuators constraints are not fulfilled. 
In the authors knowledge, weighted time-electric energy 
problem is solved for the f is t  time and the obtained results 
are original. Solutions are smoother than for minimal time 
approach (figure 2). As a grows from 0 to 1, the motion is 

Ieffmax=( 12,10)A, Dimax=(104.10 b )MS. 

slower. The minimal energy approach may ba very 
interesting in some cases. 
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6. Conclusions 
This paper considers a solution to the problem of moving a 
manipulator, with weighted time-energy performance index 
along a specified geometric path subject to voltage and 
current constraints. taking into account the viscous 
friction. The motion generation algorithm uses the 
solution of an optimal problem to find the predicted arrival 
time as well as the joint acceleration, velocity and 
position versus time. In contrast to traditional methods in 
which the count of the control steps is chosen as the 
variable and an exhaustive sequential search is used to fmd 
the minimum time, the proposed approach considers the 
sampling period as a variable. The optimization problem 
is solved using the NPSOL software. A weighted time- 
energy performance index is of great interest since it 
allows the use of smooth controls while existing methods 
are only time-optimal ones. We have proposed some 
comparison remarks. 
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