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I - INTRODUCTION 
Minimum time point to point motion planning has 

been solved considering kinematical constraints on 
speed and acceleration [3]. These bounds are 
approximations and imply the full capability of the 
robot cannot be utilized. Efficiency can be increased by 
considering the characteristics of the robot dynamics. 
[l] has presented a trajectory generation based on 
optimal control formulation, assuming that joint torques 
are constrained. [2] have shown that most often the 
structure of the minimum time control requires that at 
least one of the actuators is always in saturation 
whereas the others adjust their torques so that some 
constraints on motion are not violated while enabling 
the arm to reach its final desired destination. 

Although the obtained results are important, they are 
not applicable directly to an industrial robot. From an 
user view point, it would be preferable to have a 
suboptimal but simpler solution to implement. For this 
purpose, we have chosen a polynomial trajectory and we 
find parameters of the trajectory, for a minimal time 
motion. In this paper, the simple expressions previously 
obtained [3], are extended to actuator constraints. 

U. - PROBLEM FORMULATION 
2-1 Motion description 

For joint variables planning, the time history of all 
variables are pIanned to describe the desired motion of 
robots. The trajectory must be chosen smooth enough 
not to excite the high frequency unmodelled d y c s .  
Assume the motion is represented as a 5 degree 
polynomial interpolation of time between two points : 

(1) q(t)=qi +Dr(t/tf) with ~ = q ,  -q i  

r(t/tf)= lO(t/tfP-l5(t/tf)4+6(t/tf)S 
Using time derivation on equation (1) gives : 

t describes the interval [O,tfl or equivalently x belongs 
to [OJ]. Thus, if we use x as a variable, we may write r 
as a separate function of tf and x. 

2-3 Actuator model 
In a permanent magnet DC! motor, the torque I- is 

proportionnal to armature current I. For a non- 
redundant robot, there are usually as many actuators as 
the number of d-o-f. Then the actuator dynamics for the 
whole robot can be characterized in a matrix form as : 

(5 )  
dI 
dt 

T = K I  and U=L-+RI+Kq 

where L, R and K are diagonal matrices representing 
inductance, resistance and torque constant of actuators, 
U being the motor voltage. 

The following equations will be used : 
- -+(x)+~E(x)+-F(x)  dT 1 -  1 -  1 -  With 
dt tf tf tf 

2-4 Actuator constraints 
Capabilities of DC motors are mainly limited by the 

heat generation and dissipation characteristics. One 
actuator constraint consists of the limitation of the 
motor current to avoid demagnetization. The motor 
voltage is also constrained to a maximum. Besides, the 
electric drivers are constrained to a maximum current 
derivative value. Finally we consider the constraint on 
the current root mean square value to prevent 
overheating : 

lIjl5 1-j IUjl5u-j 17) 

2-2 Manipulator model 

Its dynamic model can be expressed as : 

where q, q and q are respectively the joint position, 
velocity and acceleration, r is the joint input torque. 

The manipulator is assumed to be made of rigid links. 

r=A(q)ii+QTB(q)Q+F(q)il+G(q) (3) 

From (2) and (3) we obtain the expression : 

(4) 
1 -  1 -  t r=TA(x)+-B(x)+G(x) with x=- 

tf tf tf 

x(x) = A(q(x))Df+D’B(q(x))D($)’ q ~ )  = F ~ D ~  dr 
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2-5 Problem formulation 
The problem may be formulated as follows : 

Min (tf } subject to (8) 

1009 

mailto:pledel@lan.ec-nantes.fr
mailto:bestaoui@lan.ec-nantes.fr


LII - RESOLUTION METHOD 
The optimization theory gives the solution of (8). It is 

located in the vertex of the admissible set. Assume the 
robot moves using the maximum motor capabilities. 
Current bounds lead to the 2"d degree equation in tf : 

(m, - G(x)) tf2 - q x )  tf - X(X) = 0 

tf/l = MaX(tfl/1 11J<Il (x) 1 x E [OJ]) (10) 

(9) 
This equation always admits two solutions for every 

joint. Let tGx(x) be the smallest real positive root of (9). 
Thus the candidate time tf possible for the motion (1) is 
p e n  by : 

The candidate times tffor the constraints on current 
derivatives and voltages are also obtained when one of 
these values reaches its bounds. We then have : 

+&,tf3 - K-'F(X)tf2 - K-'E(x)tf - K-'~(x)  = 0 

+_u,tf' - A(X)tf * - q x ) t f  - e(,) = 0 

These 3rd degree equations can be solved analytically. 

Constraint concerning the current root mean square 
The respective solutions are called tVdI and tm. 

value leads to a 5& degree equation in tf : 
1 1 

0 
1 7 1 (12) 

0 

t,zjqxpx - t f  jqxpx - jqxpx = 

0 0 0 

Such an equation can be solved numerically, giving 
all the solutions, the smallest real positive root is tnetf- 

Numerical implementation consists in choosing start 
and end points. We then calculate the solutions of (9) 
and (11) for x E [0,1] with a sufficient discretization. 
The minimum time is the following maximum value : 

Besides, the calculus of the coefficient of (1 2) gives : 
(14) 

The final solution tf is then the maximum of all 
previous values. 

Note that the differents matrices A, ..., p ?  A, ..., e 
are obtained analytically with a low number of 
operations. 

tfjl = (XI> trj/&>' (x> / x E IOJI) (13) 

tfIleff =Max(real root of (12)) 

IV - NUMERICAL EXAMPLES 
We performed numerical simulations with a 2- 

rotational d-o-f robot. In ths paper, we only present the 
case of constraints on current : 
q,, = [7,10] rads and qmm = [3.8,50] rads2. 

We perform various trajectories whose start point is 
[0.5,0.3] m, and end point belongs to the plane 
(X 0, Y > 0). We plot the ratio between the times tk 
and tfc found for lunematical and current constraints 

La = [10.0,10.0] A, 

(i.e. 100 (tfc - tk) / ta), as a function of the position of 
the end point (figure 1). 

The minimum and maximum values of the ratio are 
respectively -25 YO and +50 YO. Negative values seem to 
show that kinematical constraints could lead to better 
results. but in fact the currents exceed their bounds. The 
motions are physically impossible. Then, kinematical 
constraints obtained with approximations on (3) and 
(5), are not acceptable, and do not correspond to the 
worst admissible cases. Besides, when they are 
acceptable approximations, there exist trajectories for 

figure 1 
Even if the computation time for our formulation is 

longer and depends on the discretisation adopted, it 
leads to good results. Using equations (1 1) and (12) this 
work will be extended to the more general constraints 
(7). 

V - CONCLUSIONS 
In specwng a trajectory, the physical limits of the 

system must be considered. It is common to model these 
limits as constant maximum values for acceleration and 
velocity. The trajectory goes from the initial to the find 
position with initial and final velocities zero, subject to 
limits on sped and acceleration. These assumptions are 
often unrealistic. These considerations mean that even 
for joint level trajectories, any assumptions about fixed 
acceleration limits must be based on the worst case. 
This results in motions that are usually slower than 
necessary or else the actuators may be unable to follow 
the requested trajectory. A more realistic assumption 
means that even for joint level trajectories, any 
assumption is that the limits on the amount of voltage 
and current a motor may generate are given limits. 

The proposed motion generation algorithm uses the 
solution of polynomial equations to find the predicted 
arrival time. This polynomial interpolation with only 
one parameter (tf), allows to generate easily the path on 
line. 
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