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Abstract 

The optimal motion generation problem is solved 
subject to various actuator constraints while the motion is 
constrained to an arbitrary path. The considered objective 
function is a weighted time energy Jitnction while most of 
existing methods consider only the time-optimal problem. 
We present some simulation results using a mathematical 
programming technique (Sequential Quadratic 
Programming) existing in the NPSOL sofrware. 

1 Introduction 

Motion along a predefined path is common in robotics, 
for instance in the case of spraying, cutting or welding. It 
is natural to look for an optimal solution along the path 
[9]. The path is given from the application and a first step 
is to obtain a nominal motion specification. A required 
path is normally expressed analytically in Cartesian space. 
The resulting trajectory can be expressed either in Cartesian 
space or joint space and the advantages and disadvantages of 
either representation are consistent with the interpolation 
method [ 5 ] .  The geometric path does not contain any 
timing information but includes only spatial positions and 
orientations. When a continuous correspondence is made 
between a trajectory described in Cartesian space and joint 
space, problems may appear related to workspace and 
singularities. The trajectory must be planned so as to 
remain in the manipulator workspace. In this case, path 
generation in joint space could be easily executed but a 
Cartesian trajectory would fail. In this paper, the emphasis 
is put on the optimal planning of manipulators trajectories, 
in joint space. The trajectory must be optimal with respect 
to a specified performance index. 

For rigid robots, the minimal time optimization along a 
predefined path can be solved using phase-plane techniques. 
This algorithm can however not be extended to the case 
under interest, the objective function being a weighted time 
electric energy function. The determination of the desired 
robot motion as a function of time involves a nonlinear 
optimal control problem. 

We will focus on manipulators actuated by DC motors 
which operate over a wide speed range and have excellent 

control characteristics. The motor current of a DC motor is 
proportional to the torque it generates. 

The remainder of this paper is divided into four 
sections. The problem is formulated in the following 
paragraph. Then numerical resolution is introduced in the 
third paragraph while, some simulation results are 
presented in the fourth section. Finally, general conclusions 
are given in the last paragraph. 

2 Problem formulation 

2.1 Manipulator model 

The manipulator is assumed to be made of rigid links. 
For a manipulator with n joints, the dynamic model can be 
expressed using the Lagrangian equation as: 

r = A(q)ii + ;irB(q) ;I + G(q) + F(q) ;I (1) 

where the n x 1 vectors q, q and q are respectively the joint 
position, velocity and acceleration, the n x 1 vector r is the 
joint input torque, G is the n x 1 gravitational force vector, 
B is the n x n x n Coriolis and Centrifugal force matrix, F 
is the viscous friction and A is the n x n inertial matrix. 

2.2 Actuator model 

In a permanent magnet DC motor [SI, the magnetic 
field is developed by permanent magnets. For such a motor, 
the torque is proportionnal to armature current I. For a 
non-redundant multi-degrees-of-freedom robot, there are 
usually as many actuators as the number of degrees-of- 
freedom. Then we consider the actuator dynamics for the 
whole robot being characterized in a matrix form as : 

(2) 
dI 
dt U=L-+RI++K q ~ = K I  

where L, R and K are square regular diagonal matrices 
representing the inductance, resistance and torque constant 
of the robot. U is the motor voltage . 
- the kinetic energy of the motor is due mainly to its own 
rotation. Equivalently, the motion of the rotor is a pure 
rotation with respect to an inertial frame. 

Some additional assumptions are made : 
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- the motorhansmission inertia is symmetric about the 
motor shaft axis of rotation, so that the gravitational 
potential of the system and also the velocity of the motor 
center of mass are both independent of motor position. 

2.3 Path description 

The path describes the robot motion in space. In practice, 
analytical function are seldom directly available. Usually, 
the path is specified as a finite number of points which 
have to be passed in a given order [5].  Assume the path is 
represented as a parameterized curve q=q(s), where s is a 
scalar path parameter. A trajectory is obtained from the path 
by specifying the path parameter as a function of time. The 
function s(t) is defined on the interval [O,V where s(O)=so 
and s(T)=sf. Since we assume that the path is fixed, i.e. the 
function q(s) is given, the trajectory q(s(t)) can be 
represented by the path parameter s(t). We assume that the 
path parameter s(t) is piecewise twice differentiable with 
respect to t. Using the chain rule for differentiation gives : 

where qs is the vector tangent to the path and qss is the 
curvature vector obtained by differentiating qs with respect 
to s. 

.. 
q = q s s  and q=qs ,?+q,S  (3) 

2.4 Rewriting the robot dynamics 

Equation (1) describing the robot dynamics, can be 
substituted, using equations (3) to get : 

T=Al(s)s+B l(s)s2+Fl(s)s+G1 (s) =A1 (S){+A~(S,~) 
where : 
 AI(^) = A(q(s)) 4s Bib) = qsT B(q(s)) qs+ A(q(s)) qss 
Fl(s) = Fv(q(s)) 4s Q(s) = G(q(s)) ( 5 )  

(4) 

The parameters A i ,  B1, G1 and F1 are path specific, 
representing the inertia and centrifugal-Coriolis, gravity and 
friction forces reflected at the joints for a given point along 
the path. 

We write the following equation which will be used in 
the sequel having time derivative of T : 
dl- -- dt - Ai (s) $'+[Ai s( s)+2B 1 ($14 s+B 1 &)s3 

2.5 Optimal problem formulation 

"he optimization algorithm ([71, [61) is a tractable way 
to obtain the minimum-time solution where the constraints 
are obtained by combining the kinematical and torque 
constraints, the robot dynamics and the path constraint. In 
fact the capabilities of a DC motor are mainly limited by 
the heat generation and dissipation characteristics. One 
actuator constraint consists of the limitation of the 
absolute value of the motor current Imax to prevent 
overheating : 

11111 2 Imax (3 
The voltage supplied to the motor is also constrained to a 

maximum Umax determined by the value of the motor 
supply. So another actuator constraint is given by : 
llull I Umax (8) 

Then, these actuator constraints limit the torque (or force) 
applied to each link. This limitation will also result in 
limitations of the link speeds and accelerations which 
maximum values are usuaIIy obtained making 
approximations. In order to avoid those approximations, in 
this paper we consider constraints (7) and (8). 

The state and control variables are respectively chosen to 
be x=[s;s;'s'IT and U=';' so, the differential equation 
describing the system are given by : 

; ( = A x + I B u  w i t h A =  0 0 1  andlB= 0 (9) 

this system is a linear one. However, the other functions 
involved are highly nonlinear ones. 

The outimization of the motion along a sDecified path 

L:; :I [:I 
" 1  

can be skted as the following problem : 
T 

Minm {J = [(1-a)+aU(t)I(t)] dt} d 
Subject to 
- dynamical model: X=A x+lB U 
- state (position) constraint: s(O)=O;sO=sf 
- actuators limitations: -1" I I I I m a  

-U" I U< U,, 
The parameter a is chosen by the user to give more or 

less weight to time or electric energy. The actuators 
constraints (eq13-14), using equations (2) and (6), may also 
be written as: 

3.1 Introduction 

In theory, any optimal control problem can be solved 
analytically by employing Pontryagin's minimum 
principle. However, it is impracticable to do so if the 
dimension of the state vector is higher than two. In optimal 
control, there are direct and indirect solution methods. 
Direct means to affect a control history directly by varying 
a finite set of defining parameters. Indirect means to solve 
the two point boundary values problems constituted by the 
necessary conditions of optimality. Such methods are for 
example : Differential Dynamic Programming technique 
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[I], or multiple shooting technique [2 ] .  However, they 
require an a priori identification of singular arcs. 

Therefore as practical alternatives, many numerical 
methods have been developed. All of the available 
numerical methods first discretize the given continuous 
system with a fiied sampling period. The period should be 
small enough so that no significant discretization error is 
introduced. Then the minimum count of steps are searched 
for, such that the system reaches the desired final state. 
Since in the discrete domain, the number of variables is 
itself a variable, this problem can only be considered by 
solving exhaustively a sequence of fixed time problems. 
The difficulties of this method lie in the mechanism of 
sequencing the fixed time problems and in knowing when 
to stop [3]. 

Another difficulty of the discretize-then-search method is 
the conflicting effect of the sampling period on the 
discretization error and on the complexity of the 
optimization problem. Since the final time is fixed for the 
original continuous system, although it is unknown yet, it 
should be equal to the product of the sampling period used 
in the discretization and the count of steps found in the 
optimization. Thus, if the sampling period is reduced for 
better accuracy, then the minimum count of steps increases 
inversely. This makes the search iteration count long, and 
the problem size becomes larger near the end of the search 
process. In order to avoid the exhaustive iteration and to 
overcome the conflicting effect of the sampling period for 
the discretization error and on the computational 
complexity, this paper fixes the count of steps and treats 
the sampling period for the discretization error as an 
optimization variable. The optimization process minimizes 
the sampling period and determines the corresponding fixed 
number of steps to achieve a desired state transition under 
constraints. Any change of the sampling period during the 
optimization changes the dynamics of the discrete system 
which is a counterpart of the original continuous system. 
Since the usual optimization process is performed on a 
system whose dynamics are fixed, the proposed approach 
seems unreasonable. However, the goal of optimization is 
not only to reduce the sampling period itself, thus reducing 
the final time (the product of the count of steps and the 
minimum sampling period obtained in the optimization), 
but for the discrete counterpart to best approximate the 
original continuous system. 

3.2 Discrete counterpart 

With a period z being a small constant, Euler's first order 
approximation of the time derivative of the state vector (eq 
9) is given as &t)= [x(t+z)-x(t)]/~. This gives a discrete 
state equation : 
Xi+1 = (I+TA)xi+TIBui with xi=x(iz) and ui=u(iT) (17) 

Solving (17) gives the state expression at general 
discretized point k in terms of the initial state and the 
intermediate inputs as : 

k- 1 

Xk = (I + 2 A ) k  XO + 2 (I + TA)k-l-i IB Ui (18) 
i=O 

where (I+zAIk= 

With this discretization, the original problem is restated 
in a new manner. If the original continuous system has a 
(theoretical) optimal time T, the minimum count of the 
discrete steps will be N = Int(T/7). 

Considering the sampling period as a variable, this 
problem is transformed into a discrete form as follows: 
The variable X = [uo,ul, ..., uN-1 ,2IT (20) 

N -2 

i=O 
The performance index: (l-~r)(lNZ).~+a 2 CUiIi (21) 

The equality constraints: 
IN -2 

xf - (I+TA)'-~ xo - 'C C(I+2A)N-2-iIB,i = 0 (22) 
i=O 

The inequality constraints 
- Imax < Ik(X) - u m u  suk(x ) s  u m a  

- s k < o  for all 0- - 1 (23) 
Then there are (2n+l)IN+3 constraints. 

4 Simulation results 

Numerous simulations were performed using the 
"SOL software [4]. NPSOL uses the Sequential Quadratic 
Programming (SQP) technique which belongs to the class 
of Projected Lagrangian methods [4]. This class includes 
algorithms that contain a sequence of linearly constrained 
subproblems based on the Lagrangian method. The idea of 
linearizing nonlinear constraints occurs in many algorithms 
for non linearly constrained optimization including the 
reduced gradient type methods. The subproblems involves 
the minimization of a general non linear function subject to 
linear equality constraints and can be solved using an 
appropriate technique 141. The choice of solution method 
will depend on the information available about the problem 
functions (i.e. the level and cost of derivatives information) 
and on the problem size. For our concrete problem, we 
have given the gradients of the functions (eq 21-23) 
computed with the MAPLE software, to the NPSOL 
program. 

The algorithm was applied to a two-degree-of-freedom 
robot (with two rotational joints). The proposed path, 
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defined by four crossing points, is represented by parts of 
fifth degree s-polynomials. Table 1 gives the crossing 
points coordinates: 

table 1 
The dimension of vector X is chosen to be 201. There 

exists then 1003 constraints. The bounds of the voltage and 
current are the different values of the S C A M  robot of our 
laboratory : Umax=(30,20)TV and I"= ( 10,lO)TA. 

Most of the nonlinear programming algorithms require a 
feasible solution set of the optimization variables to start 
the optimization. However, in many cases, it is difficult to 
find a feasible solution. It is known from SQP that it 
converges quadratically if the initial estimate is sufficiently 
close to the solution and the hessian of the Lagrangian is 
positive semi-definite. When the restrictive conditions 
mentioned above, are not verified, SQP algorithm will in 
general fail to converge. One reason is that the correct 
active Constraints set must somehow be determined. 
Another is that the subproblems may be defective because 
of incompatible constraints. SQP can be viewed as a 
Newton-method and it is known that an unsafeguarded 
Newton method is not a robust algorithm. SQP is good in 
terms of its local convergence properties but not in terms 
of guaranteed convergence. 

We describe a way to deal with this problem. Classical 
approaches ([6]) show that most solutions in minimum 
time are bang-bang. Then, for a motion between two 
points, the motion is made of phases with respectively, 
positive and negative accelerations. If we approximate this 
motion with a continuous curve we may obtain the 
following curves for s and s' : 

figure 1 
In order to generalize this, in the case of several crossing 

points, we use a polynomial interpolation curve, where the 
user chooses the number of variations and the maximum 
value of s '  = U : 

figure 2 
The IN first estimated elements of X (see eq. (23)) are 

then obtained discretizing the previous curve, and 2 is 
solution of s(T)=sf, which gives : 

I N - 2  

We performed some simulations with different values of 
L and R. Table 2 presents the number of iterations and the 
value of the performance index for different cases of R and 
L, when a=O. The identified values of our robot are 
L0=[0.006, 0.0021H and RO=[1.2, 2.03Q. Those examples 
were performed with curvilinear accelerations and velocities 
equal to zero at the extremities: 

table 2 
We give for every example the shape of the current and 

the voltage. The first axis is represented with a continuous 
line, while the second one is plotted with a dotted line. All 
these figures show the importance of the DC actuators 
constraints (13-14), particularly for the primary degrees of 
freedom, for which the motors are more powerful, with non 
negligeable resistances and inductances. Sometimes, 
currents are saturated, sometimes the voltages and 
sometimes both of them. Example 1 shows that the current 
(torque) of the first axis is always saturated, we then have a 
bang-bang solution (figure 3). But in transition phases, the 
voltage is also saturated (axis 1 at the begining, and axis 2 
at the end of the motion: figure 4). Thus equation (8) 
cannot be simplified as qmU= K-lOJmax-RImax) [9]. 
Example 2 shows that both constraints on the current and 
the voltage can saturate (figures 5, 6). And in example 3 
only the voltage saturates (figure 8). This actually shows 
that usual constraints on torques are not sufficient 
although. 

In addition, although there are a lot of constraints and the 
path is non trivial, the convergence seems to be correct, 
with a good choice of the initial estimate. In fact, the 
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choice of the initial estimate remains the main problem. 
Those simulations were performed with an initial curve for 

for z is 14 ms. The choice of s ~ 1 5  was made IO contract or 

the calculus of the gradient constraints. Although such a 
choice has been made, some problems remain (figures 5-8): 

reason why some irregularities appcar in the last part of the 
previous figures. After a manual scarch of all those 

P.C. with a Pentium 90 processor with 24 MO RAM. 

15 

l o - -  U with 11 variations and ~max=300. Then an initial value 

expand the curve, so as not to have numerical problems in 

the final solution can not be improved by NPSOL; it is the 

parameters, the time execution was about two hours on a 
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figure 8 
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5 Conclusions 

This paper considers a soluiion to the problem of 
moving a manipulator, with weighted time-energy 
performance index through some given points, subject to 
voltage and current constraints, taking into account thc 
viscous friction. The motion gencration algorithm uses the 
solution of an optimal problem to find the predicted arrival 
time as well as the acceleration, velocity and position 
versus time. The obtained trajectory is continuous on 
position, velocity and acceleration. A weighted time-energy 
performance index is of great interest since it allows thc 

use of smooth controls. The current work shows the 
importance of the actuators constraints on the current and 
voltage, which should be prefered to the usual constraints 
on the joint torques, accelerations and speeds. Their 
maximum values are usually constant and then, do not take 
into account the nature of the considered path. 

In contrast to traditional methods in which the count of 
b e  control steps is chosen as the variable and an exhaustive 
sequential search is used to find the minimum time, the 
proposed approach considers the sampling period as a 
variable. The optimization problem i s  solved using the 
NPSOL software. 

In the future, we will include new constraints on other 
characteristical elements of the actuators such as the 
thermic limit on a period given by the current mean square. 
Besides, drivers do not support infinite slew rate of the 
actuators. We will also try to orientate our work toward 
suboptimal solutions in order to have less parameters to 
adjust. Although we considered DC motors, other actuators 
generally present the same constraints since usually both 
the current and voltage of the actuators are bounded. 
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