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Abstract 

Motion generation gives the joint positions, speeds 
and accelerations of manipulators, at every moment. ?Ve 
assume that the motion are polynomial trajectories, that 
ensure joint acceleration continuity. Usual kinematical 
constraints, obtained with approximations, are not 
always suflcient, then we will focus on actuators 
constraints on voltages and currents. 

1 Introduction 

The minimum time motion generation has been 
solved in a number of ways, following the usual 
approach, i.e. taking as the feasible limits purely 
kinematic constraints on velocity and acceleration [2], 
[SI, [6]. Conventional motion generation in joint space 
uses a constant bound on the acceleration. Ths  bound 
must represent the global least upper bound of all 
operating accelerations so as to enable the manipulator to 
move under any operating conditions. It implies that the 
full capabilities of the manipulator cannot be utilized if 
the conventional approach is taken. The efficiency of the 
robotic system can be increased by considering the 
characteristics of the robot dynamics at the motion 
generation stage. [6] had applied the classical approach 
of point to point minimum time control to robot arms, 
where only a linear approximate model was used. [ 11 has 
presented a trajectory generation based on optimal 
control formulation. Assuming that joint torques are 
constrained and using the Hamiltonian formulation of 
the dynamic model, a minimum time cost criterion was 
considered. [3] have shown that most often the structure 
of the minimum time control requires that at least one of 
the actuators i s  always in saturation whereas the others 
adjust their torques so that some constraints on motion 
are not violated while enabling the arm to reach its final 
desired destination. 

Several other methods were presented for the 
resolution of the via points motion problem. [73 used the 
fact that velocity and acceleration should be as close as 

ssible to their bounds to achieve a time optimal 

Yasmina BESTAOU 
Laboratoire d'Automatique de Nantes, U 
Ecole Centrale de Nantes/Universitk de Nantes, 

1 rue de la N d ,  44072 Nantes, France 

motion. Constant velocity intervals are connected with 
constant acceleration ones (quadratic arcs). This results 
in a trajectory of all joints that move close to the given 
points with hopefully sufficient accuracy. [IO] suggested 
an improvement of the algorithm with respect to the 
minimum task execution time and accuracy. [SI 
considered the optimal motion generation problem 
subject to various actuator constraints while the motion 
is constrained to an arbitmy path. 

Although the obtained results are very important 
theoretically, practically they are not applicable directly 
to an industrial robot. From an user view point, it would 
be preferable to have a somewhat suboptimal but simpler 
solution to implement. For this purpose, we have chosen, 
a priori, a polynomial tra'ectory and we find parameters 
of the trajectory, for a C "mal time motion. In this 
paper, using the formal calculus software MAPLE, we 
will show that the simple expressions previously 
obtained [5 ] ,  [6], can be numerically extended when we 
include merent actuator constraints. 

The remainder of this paper is divided into six 
sections. While the models and the proposed problem are 
formulated in the second and third section, the resolution 
method is stated in the fourth paragraph. Some 
simulation results are given in the fifth paragraph and 
some conclusions added in the last section. 

d . .  

2 Models 

2.1 Manipulator Model 

The manipulator is assumed to be made of rigid links. 
For an n joints manipulator, the dynamic model can be 
expressed as : 

where the vectors q, q and q are respectively the joint 
position, velocity and acceleration, the vector r is the 
joint input torque, G is the gravitational force vector, E3 
is the n x n x n Coriolis and Centrifugal force matrix, F 
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is the viscous friction and A is the n x n inertial matrix. 
Coulomb fnctions are neglected in (1). 

2.2 Actuator Model 

In a permanent magnet DC motor, the magnetic field 
is developed by permanent magnets. For such a motor, 
the torque I7 is proportionnal to armature current I. For a 
non-redundant multidegrees-of-freedom robot, there are 
usually as many actuators as the number of degrees-of- 
freedom. Then the actuator dynamics for the whole robot 
can be characterized in a matrix form as : 

(2) 
dI F = K I  and U=L-+RI+Kq 
dt 

where L, R and K are square regular diagonal matrices 
representing the inductance, resistance and torque 
constant of the robot actuators. U is the motor voltage. 

2.3 Actuator Constraints 

The capabilities of a DC motor are mainly limited by 
the heat generation and dissipation characteristics. One 
actuator constraint consists of the limilation of the 
absolute value I,, of the motor current in order to avoid 
demagnetization. The motor voltage is also constrained 
to a maximum U- Besides, the electric drivers are 
constrained to a maximum derivative of the current 
a,-. We consider the amtraint on the [current mean 
square value Ieff,, to prevent overheating. Finally we 
also have to fulfill a limitation on joint speeds because of 
mechanical considerations. Then, for every joint lljln : 

(3) 

(4) 

3 Problem Formulation 

For joint variables generation, the time history of all 
joint variables and their derivatives are planned to 
describe the desired motion of manipulators. This has the 
advantage to give directly the reference trajectories, and 
not to have to deal with the inverse kinematic models. 

The desirecl trajectory must be chosen smooth enough 
not to excite the high fiequency unmodelled dynamics. It 
is the reason why we will choose polynomials allowing 
zero speed and acceleration motion at start and end 
points. 

If we attempt to pass the manipulator through 
intermediate points with non zero velocity then at all 
trajectory extremum points, the manipulator could 
overshoot the trajectory point, as the velocity must 
change sign either before or after the point. The solution 
to this problem is to require zero velocity at each 
trajectory extremum [2]. 

3.1 Point to Point Motion Description 

In order to satisfy the smoothness assumption we 
assume that the motion is represented as a fifth degree 
polynomial interpolation of time between two points [9] : 

(9) 
with D=q,-qi 

Ir(t/tf) = 10(t/tf)3- 15(t/tf)4+6(t/tf)5 

Using time (derivation on equation (9) gives the joint 
speeds and accelerations, with x=t/tf : 

3.2 Via Points Motion Description 

(7) 

Most of the time, people use more restriating relations 
than (3)-(7). They prefer to define maximal accelerations 
and velocities, making approximations in (1)-(7), in 
order to find rapidly an upper value for tf : 

Now the manipulator has to pass through m+l via 
points. The motion is supposed to have a continuous 
acceleration. Start and end points are chosen to have 
joint speeds and accelerations equal to zero. For those 
reasons we represent the motion with a fifth degree 
polynomial between each crossing point rather than 
cubic splines that offer less possibilities : 

Assuming continuity of joint positions, speeds and 
accelerations fior each polynomial, we obtain the 
following equations : 
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4 Resolution Method 

e finally obtain, for each polynomial, the 
coefficients as a hnction of the various positions, speeds 
and accelerations. But, in order to have expressions 
which are not explicit functions of the final time tfk, we 
operate the following change of parameters : 

Then the previous equations (12) lead to : 

1 ;  
aO,k =qk al,k = ( i k  a2,k = yqk 

In addition for each polynomial, the duration tck could 
be expressed with the value of the first one tcl : 

The general problem of minimum time motion may 
be formulated as follows : 

Min (tt1 1 subject to (16) 

Note that in point to point motion tcl = tf. In via point 
motion the variables to be optimized are the previous 
parameters introduced in (1 3) : 

4.1 Proposed Minimum Time Approach 

The optimization theory gives the solution of problem 
(16). It is located in the vertex of the admissible set. The 
resolution will be organized as follows. First, this 
problem will be solved for each constraint (3)-(7), then 
the greatest value of all the proposed times will be taken 
as the predicted arrival time tf. Let us assume the robot 
moves using the maximum motcx capabilities. 

First we consider joint speeds limitations (7). The 
minimal time is obtained when, using (10) : 

t describes the interval [O,tf] or equivalently x belongs 
to [O,l]. Thus, if we use x as a variable, we may write r 
as a separate function of tf and x. From (1) and (lo), we 
obtain the following expression : 

r =?A(x)+-B(x)+G(x) 1 -  1 -  
t r  t r  

E(x)=F,D- dr 
dx 

We also write the following equations which will be 
used in the sequel having time derivative of r : 

dT- 1 -  c(x) + -+(x) + 'qx) 
dt tf tf tf 

dx2 dx 

Using eqns (2) and (19), current bounds (3) lead to 
the following second degree equation in tf : 

For every joint (j=l,n), the solution tfin(x) of (21) can 
be approximated, neglecting the gravity and viscous 
friction, by : 

450 



Then, we can suppose that there always exists a real 
positive root for tGa(x). 

The candidate times tf for the constrairits on current 
derivative (5)  and voltage (4) are also obtained when one 
of these values reaches its bounds. We then have two 
third degree equations in tf to solve : 

A third degree polynomial equation ci3n be solved 
analytically. It may have 1 or 3 real roots friom which we 
choose the smallest positive value (or zero if it does not 
exist). Such equations can be solved using the formal 
calculus software MAPLE. The respective solutions are 
called ffl,a(x) and tf,&x). 

The constraint concerning the current root mean 
square value (6) leads to a fourth degree equation in tf : 

Ieffmw2tf4 - tf4i6(x)dx- t?i6(x)dx- 

(25) 
0 0 

t:;q+x- t f ; ~ x p x -  ii(xpx = o 
0 0 0 

where : 

i (x )  = (K-'A(x))Z 

6(x) = 2K-'E(x)K-'X(x) 

e(x) = ((K%(x)r + 2K-'G(x)K-'X(x)) 

6(x) = 2K-'E(x)iK-'G(x) 

6(x) = (K'G(x))2 

Such an equation can be solved numerically, giving 
all the four solutions, using the soha re  MAPLE (the 
smallest real positive solution is called tfm&. 

4.2 Numerical Implementation 

All the differents matrices A, ..., 6 ,  A. ..., e, and 
A, ..., are obtained analytically. Then, in point to 
point motions, the numerical implementation consists in 
choosing the start and end points of the path. We then 
calculate the solutions of (18), (21), (23) and (24) for 
every x belonging to [0,1] (i.e. with ,a sufftcient 
discretisation). Besides, the numerical calc:ulus of the 

coefficient of (25) allowed MAPLE to give all the 
complex solutions. The minimal time is the following 
maximum value : 

In via poiint motions, the problem implies an 
optimization of the variables X (17). Using those 
parameters allows to calculate for each polynomial, as in 
point to point motion, the roots of (18), (21), (23) and 
(24). But using (15), showing the relation of time tck 
with X, we prefer to obtain the value ti:) of tcl for the 
k* polynomial. To ensure the constraints on the whole 
trajectory, the result is then : 

The result is a function of the optimization variables 
X. As in many optimization problems one of the hardest 
part of the study lies in the initial estimate [SI. We 
provide initial values to X, solving a minor optimization 
problem under kinematic constraints, not involving 
models (1) and (2). The initial estimate of this problem 
is easily obtained using classical results [5 ] ,  for a point to 
point motion on each polynomial of the curve : 

Because of the large number of parameters allowed by 
5* degree polynomial (speeds and accelerations) we 
notice that for non restricting axis, the value of qjJc and 
qj,kdo not change. Then we optimize each axis 
separately, find the restricting axis jc and generate new 
values of aj,k and q,,k (j?tjc) : 

For non restricting axis, the new speeds and 
accelerations arc obtained using a medium value based 
on the times of adjacent polynomials. This choice has 
been used because it leads to smooth trajectories with no 
overshoots or lwps. 
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kinematic constraints are satisfied, and an initial 
estimate of X is obtained with the valnes of tn, q,.k and 

Gj,k (I3). 
We are now able to compute an unconstrained 

optimization problem, solving polynomial equations, 
using the initial estimate. Our formulation ensure that all 
the constraints are satisfied. 

5 Numerical Examples 

5.1 Robot Characteristics 

We performed numerical simulations with a hvo 
degrees-of-freedom SCARA like robot (simulating our 
lab robot) that arm lengths are 0.5 m and 0.3 m. 

The different values of the actuators limitations are : 

I,, = [11.53,7.29] A 
dI,, = [104,104] A/s 
qpmax = [7.0,21.0] rads 

U,, = [40.0,26.3] V 
Ieff,, = [12.0,10.0] A 

Besides, the maximum admissible joint speeds and 
accelerations, for our robot, are : 

K, = [7.0,10.0] r d s  K, = [3.84,49.6] rads' 

We did not consider the constraint on current root 
mean square value (6) here to simpllfy the problem. 

5.2 Simulation Results 

In the beginning, we present two examples of a point 
to point motion for constraints (3)-(7), for a fifth degree 
polynomial interpolation between two points (9) : 

1 I endpoint I [0.78,0.08]m I [-.051,0.412]rad ] 
table 1 

For the first example, when we use the classical 
results of (28), we obtain the minimum time tGl = 1.45 s. 
With our new formulation (26), involving actuator 
constraints, the value is th, = 1.36 s. Then, we see that 
we have a gain on the final time about 7%, which is non 
negligible when the task is highly repetitive. 

Figures 1 and 2 are relative to the first example, and 
present the current of the first axis (for which the bound 
is reached), when t f=  tel and when t f=  tb,. The 
differences between those two results justify our 
approach. 

In the second example, we see that (8) are not 
acceptable approximations. The time obtained with (28), 
ttk2 = 0.37 s, is lower than the one for (261, fh2 = 0.39 s, 
but the current of the first joint exceeds its bound 
(figure3). In fact, the values Kv and K, do not 
correspond to the worst admissible case (especially when 
Coriolis and Centrifugal forces are important). 

Besides, because of the result of this second example, 
for whch (28) leads to a non admissible motion, we 
calculate the real maximum values of the accelerations 
K, reached by the robot during the motion. The new 
value K, = [2.5,45.0] rad/? is adopted for the third 
example. 
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A third example is proposed for a via point motion 
( l l ) ,  with 6 crossing points : [0.3,0.1] m, [0.4,0.1] m, 
[0.6,0.2] m. [0.6.0.3] m, [0.4,0.4] m and [0.2.0.51 m. 

Figure 4 represents first axis current with respect to 
kinematical constraints with the method described in 
(29). A greater value than K,,, will conduct to a non 
admissible motion. Figure 5 shows currenl with respect 
to actuators constraints calculated with (27). 

Using a fifth degree polynomial, the obtained 
trajectory is smooth and does not present lovershoots or 
loops at via-points. 
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Final times are, respectively for figures 4 and 5, of 
1.84 s and 1.50 s, representing a 20% improvement. 

Even if the computation time for our formulation is 
longer and depends on the discretisation adopted, it leads 
to good results. A special fixed movement has often to be 
repeated thousand of times. In such cases, generation of 
smooth trajectories which can be performed in minimum 
time becomes interesting even at the price of longer off 
line computation times (10 mn instead of 10 s). On line 
computation times, involving few parameters (9) or 
( 1 1)-( 14), remain short. 

Those examples clearly show that traditional 
kinematical constraints are not satisfying. All the 
constraints (3)-(7) are important to ensure an admissible 
motion. 

6 Conclusions 

In specifying a trajectory, the physical limits of the 
system must be considered. It is common to model these 
limits as constant maximum values for acceleration and 
velocity. The trajectory goes from the initial to the final 
position with initiai and final velocities zero, subject to 
limits on speed and acceleration. These assumptions are 
often umealistnc. These considerations mean that even 
for joint level trajectories, any assumptions about 
acceleration limits must be based on the worst case. 

tions that are usually slower than necessary 
actuators may be tanable to follow thc 

rcquested trajectory. A more realistic assumption means 
that the limits on the amount of voltage and current a 
motor may generate are given limits. 

The proposcd motion generation algorithm uses the 
solution of polynomial equations in tf to find the 
predicted amval time. Besides, the polynomial 
interpolation with only few parameters, allows to 
generate easily the path on line. In the future. this 
approach will be applied to a real manipulator. 
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