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Abstract :

The optimal motion generation problem is solved subject to
actuator constraints while the motion is constrained to an
arbitrary path. The cobsidered objective function is a
weighted time energy function. Existing methods consider
only the time-optimal problem. We present some
simulation results using a mathematical programming
technique (Sequential Quadratic Programning) existing in
the software NPSOL. Then a comparative study is made
between existing methods and the proposed technique.

I - INTRODUCTION

Motion along a predefined path is common in robotics, for
instance in the case of spraying, cutting or welding. It is
natural to look for an optimal solution along the path
[VANW]. The path is given from the application and a first
step is to obtain a nominal motion specification. A required
path is normally expressed analytically in cartesian space.
The resulting trajectory can be expressed either in cartesian
space or joint space and the advantages and disadvantages of
either representation are consistent with the interpolation
method [PLED]. The geometric path does not contain any
timing information but includes only spatial positions and
oricntations. When a continuous correspondence is made
between a trajectory described in cartesian space and joint
space, problems may appear related to workspace and
singularities. The trajectory must be planned so as to remain
in the manipulator workspace. In this case, path generation
in joint space could be easily executed but a cartesian
trajectory would fail. In this paper, the emphasis is put on
the optimal planning of manipulators trajectories, in joint
space. The trajectory must be optimal with respect 10 a
weighted time-energy performance index.

For rigid robots, the minimal time oplimization along a
predefined path can be solved using phase-plane techniques.
The optimization algorithm ([BOBR], [SHIL]) is a tractable
way to obtain the minimum-time solution. This algorithm
however cannot be extended to the case under interest, the
objective function being a weighted time energy function.
The dctermination of the desired robot motion as a function
of time involves a nonlinear optimal control problem. The

optimization problem considers the generally non linear
robot and actuators dynamics. We will focus on
manipulators actuated by DC motors. DC motors operate
over a wide speed range and have excellent control
characteristics.

The remainder of this paper is divided into five sections.
Modelling is introduced in the following paragraph. Then
some existing methods are presented in the third section,
while a nonlinear programming technique is introduced in
the fourth paragraph. After that, some simulation results are
presented in the fifth section and some discussions given.
Finally, general conclusions are given in the last paragraph.

1II - MODELLING
2-1 manipulator model
For a manipulator with n joints, the dynamic model can be
expressed using the Lagrangian equation as:
n n

Ti= QAjj (@ § +Gigg) + 2Fij (@ j
j=1 j=1
n

+ ZBijm (@9 9m i=l..n 0))
j=1, m=1

where the n x 1 vectors g, § and § are respectively the joint

position, velocity and acceleration, the n x 1 vector I is the

joint input torque, G is the n x 1 gravitational force vector,

B is the n x n x n Coriolis and Centrifugal force matrix, F

is the viscous friction and A is the n x n inertial matrix.

2-2 actuator model

In a permanent magnet DC motor [TAHB], the magnetic
field is developed by permanent magnets. For a non-
redundant multi-degrees-of-freedomn robot, there are usually
as many actuators as the number of degrees-of-freedom. The
actuator dynamics, giving the voltage U as a function of the
current I, can be characterized in a matrix form as:

u=L$ +RI+K g @
where L, R and K are square regular diagonal matrices with
respectively inductance, resistance and torque constant
elements at their diagonals.

2-3 path description

The path describes the robot motion in space. In practice,
analytical function are seldom directly available. Usually,
the path is specified as a finite number of points which have
10 be crossed in a given order [PLED]. Assume the path is
represented as a parameterized curve:

q=9(s) k)
where s is a scalar path parameter. A trajectory is obtained
from the path g(g(s)) = 0, by specifying thc path parameter
as a function of time. The function s(t) is defined on the
interval [0,T] where s(0)=sQ and s(T)=sf. Since we assumc
that the path is fixed, i.e the function q(s) is given, the
trajectory q(s(t)) can be rcpresented by the path paramcter
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s(t). We assume that the path parameter s(t) is piecewise
twice differentiable with respect to t. Further, we only
consider trajectories which represent forward motion along
the path. The assumption §(t) >0 implies that 5(t) can be
expressed as a function of s(t). This function is called the
velocity profile and is denoted v(s).

I EXISTING METHODS

3.1 Introduction

Most motion generation laws are developed based on
kinematical constraints, obtained for the most unfavorable
configurations. Thus, to definc maximal torques,
accclerations and velocities, we may write:

I'max = KInax and neglecting all the dynamic terms apart
inertial ones in (1), dmax = (K Imax) /1A Ipax. Also,
neglecting L in (2) gives:

dmax = (Umax - R Imax) / K @
The determination of theses values allows to propose simple
motion generation laws. Some examples are given in
[DOMB] : bang-bang or polynomial laws for point to point
motion or a trajectory crossing some given points.

[PLUM] has proposed a suboptimal law with respect to
maximal torques. From a given trajectory, a temporal
scaling is applicd to obtain a new trajectory respecting the
maximal torques constraints.

3.2 Maximum velocity limit curve method

3.2.1 rewriting the robot dynamics

Equation (1) can be written as:

T = A1(s)§+B1(s)h24F1(s)%+G1(s) = A1(s) § + A2(s, §)
where:  Aj(s) = A(q(s)) gs F1(s) = Fy(q(s)) g5
B1(s) = gsTB(G(s)) gs+A(G(s)) gss G1(9=G(q(s)
A2(s, 8) = B1(s)$2 + F1(s) § + G1(5) &)
where qg is the unit vector tangent to the path and qgg is the
curvature vector obtained by differentiating qg with respect
to s. The parameters A1, B1, F1 and G are path specific,
represcnting the inertia and centrifugal-Coriolis, gravity and
friction forces reflected at the joints for a given point along
the path.

3.2.2 maximum velocity limit curve method

The constraints which are obtained by combining the torque
constraints, the robot dynamics and the path constraint,
provide useful information for the design of the path
velocity controller. Ignoring the dynamics of manipulators
during trajectory planning results either in reduced path
accuracy or a less than minimal traverse.

The constraints on the torques (I'min < I'S I'max) may be
written as velocities and acceleration constraints:
Smin(s.5)S8§<Smax(ss$) and 0<8<smax(s) ©
where:

$min =max ; { mings [0 - Alps.9]1 7 At (9) }
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$max =min ; { maxps[1 T8 - Al91 /Al 0)] }

The velocity limit Smax (s) is defined as the velocity at

which $min =Smax. The resolved problem may be written
T

as: Min(= [
0

u=7¥s
subject 10 1§ Spip (5, 8) < u < Spax (5, §) o

0 <5 < 5max (s)

If Al1(s) = O for some i, then this actuator does not bound
the acceleration. Thus, there is another state constraint I'mip
< A2(s, 3) <T'max . These points are called singular points
and the corresponding trajectory, singular arc. Their
existence is tied to the nature of the robot and the path.
When there exist singular arcs, solutions are bang-coast-
bang. A switch occurs at tangency, discontinuity and critical
points.
The following algorithm was proposed by [SHIL]:
1- From the initial point, integrate forward the maximum
acceleration, if it reaches the final point, go to step 5. If the
trajectory hits the limit curve at some point Sp, go to step
2.
g - Search forward for the nearest critical or tangency point,

t2Sh.
3 - From St, integrate backward the maximum feasible
deceleration until the trajectory crosses the previous
trajectory at some point, Scr S Sp. At this point, the
trajectory switches from acceleration to deceleration.
4 - From Sy, integrate forward the maximum feasible
acceleration until the trajectory hits the limit curve again. If
it passes the final point, then proceed to step 5, otherwise
£0 to step 2.
5 - From the final point, integrate backward the maximum
deceleration until crossing the previous trajectory.
The result shows that for conditions that are typically
satisfied, the time-optimal solution is bang-bang in the
sense that at least one torque is always at the limit.

1V - GENERAL MOTION GENERATION
PROBLEM

4-1 optimal problem formulation

The capabilities of a DC motor are mainly limited by the
heat generation and dissipation characteristics. The actuator
constraint limits the torque (or force) applied to each link.
This limitation will result in bounds on joint speeds and
accelerations. The state and control variables are respectively
chosen o be : x = [s, 3, 51T and u = ', 50 the differential
equation describing the system is given by:

010 0
x=Ax+Buwhere A={001 {and B=|0
000 1



the controlled system is a linear onc. However, the other
functions involved are highly nonlinear ones.
The optimization of the motion along a specified path can

be stated as the following problem:
T
Min = d[[ (1-%) + = U(t) I(t) ] dt €3]
Subject to
- dynamical model: x= Ax+Bu ()]
- state (position) constraint :
8(q(s)) = 0; s(0)=0; s(T)=sf (10)
- actuators limitations:
-Imax <1< Imax -Umax < U< Imax amn
-Dimax < %’ < Dimax 12)
T
J 12(Ddt < leff (13)

where Imax, Dimax and Ieff are respectively the maximum
absolute values of the motor current instantaneous value,
slew rate and square mean value and Umax is the maximum
absolute value of the voltage supply. The parameter & is
chosen by the user to give more or less weight to time or
energy. All the actuators limitations may have a unified
representation:

S(x(®),u(t)) <0 (14)

4-2 resolution method

4-2-1 introduction

In theory, any optimal control problem can be solved
analytically by employing Pontryagin's minimum principle.
However, it is impracticable to do so if the dimension of the
state vector is higher than two. In optimal control, there are
direct and indirect solution methods. Direct means to affect a
control history directly by varying a finite set of defining
parameters. Indirect means to solve the two point boundary
value problems constituted by the necessary conditions of
optimality. Such methods are for example: Differential
Dynamic Programming technique [BEST], or multiple
shooting technique [BRYS]. However, they require an a
priori identification of singular arcs.

Therefore as practical alternatives, many numerical methods
have been developed. All of the available numerical methods
first discretize the given continuous system with a fixed
sampling period. The period should be small enough so that
no significant discretization error is introduced. Then the
minimum count of the control steps are searched for, under
control constraints, such that the system reaches the desired
final state. Since in the discrete domain, the number of
variables (control steps) is itself a variable, this problem can
only be considered by solving exhaustively a sequence of
fixed time problems. The difficulties of this method lie in
the mechanism of sequencing the fixed time problems and in
knowing when to stop ({(CHUN]).
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Another difficulty of the discretize-then-search method is the
conflicting eﬁeaofthesamphngpmodonlhcdxsaeuwxon
error and on the complexity of the optimization problem.
Since the final time is fixed for the original continuous
system, although it is unknown yet, it should be equal to
the product of the sampling period used in the discretization
and the count of the control steps found in the optimization.
Thus, if the sampling period is reduced for better accuracy,
then the minimum count of the control steps increases
inversely. This makes the search iteration count long, and
the problem size becomes larger near the end of the search
process. In order to avoid the exhaustive iteration and to
overcome the conflicting effect of the sampling period for
the discretization error and on the computational complexity,
this paper fixes the count of the control steps and treats the
sampling period for the discretization error as an
optimization variable. The optimization process minimizes
the sampling period. Any change of the sampling period
during the optimization changes the dynamics of the discrete
system which is a counterpart of the original continuous
system. Since the usual optimization process is performed
ou a system whose dynamics are fixed, the proposed
approach seems unreasonable. However, the goal of
optimization is not only to reduce the sampling period
itself, thus reducing the control time (the product of the
count of the control steps and the minimum sampling period
obtained in the optimization), but for the discrete counterpart
(o best approximate the original continuous system.

4-2-2 Discrete counterpart

With a period © being a very small constant, Euler's first

order approximation of the time derivative of the state vector

is given as: x(t)=(x(t+1)-x(t))/t. This gives a discrete state

equation : Xj+1 = (I+TA)xj+TBy;j

where xj= x(i T) and uj= u(i ). Solving it gives the state

expression at general time k in terms of the initial state and

the intermediate inpmskas1 :

=0+t AKxg+T Y (1+tA)K 1+ By; (15)
i=0

With this discretization, the original problem is restated in a

new manner. If the original continuous system has a

(theoretical) optimal time T, the minimum count of the

discrete control steps will be: N = Int(T/t)+1. Considering

the sampling period as a variable, this problem is

transformed into a discrete form as follows:

X =[uQ, u1, ... iN-1, 7] T with dim()=N+1  (16)
N-1
The pesformance index: (I-m) N2t +xnt JUili (A7
i=0
The equality constraints:
N2
xf- A+t AN-2x9-1 2 (1 +1A)N-2-iBy; = 0 (18)
i=0
The inequality constraints:



SXX)<0;-5x<0 forallk<N-1;-1<0 19
Numerous simulations were performed using the NPSOL
software [GILL]. NPSOL uses the Sequential Quadratic
Programming (SQP) technique which belongs to the class of
Projected Lagrangian mecthods [GILL]. This class includes
algorithms that contain a scquence of lincarly constrained
subproblems based on the Lagrangian method. The idea of
lincarizing nonlinear constraints occurs in many algorithms
for non linearly constrained optimization including the
reduced gradient type methods. The subproblems involves
the minimization of a general non linear function subject (o
lincar equality constraints and can be solved using an
appropriate technique [GILL]. The choice of solution method
will depend on the information available about the problem
functions (i.e the level and cost of derivatives information)
and on the problem size. For our concrete problem, we have
given the gradicnts of the functions computed with the
MAPLE software, to the NPSOL program.

V - SIMULATION RESULTS

5-1 simulations

The algorithm was applied to a two-degree-of-freedom robot
(sce figl).

link 2

link 1 ql

figure 1
The proposed path, defined by four crossing points, is
represented by parts of fifth degree s-polynomials. Table 1
gives the crossing points coordinates:

Points 1 2 3 4
Axis X (m) 0.5 0.2 0.0 0.0
Axis Y (m) 0.3 0.5 0.5 0.4

Table 1

The dimension of vector X is chosen to be 91, There exists
then 633 constraints. The bounds of the voltage and current
are assumed respectively to be:

Umax=(30,20)Tv Imax= (10,10)TA

leff=(12,10)TA Dimax=(104,104)A/s
This gives the following torques bounds:
I'max=(14.38,11.26) TNm and "'min=-T'max
Most of the nonlinear programming algorithms require a
feasible solution set of the optimization variables to start
the optimization. However, in many cases, it is difficult to
find a feasible solution. It is known from SQP that it
converges quadratically if the initial estimate is sufficicntly
close to the solution and the hessian of the Lagrangian is
positive semi-definite. When the restrictive conditions

mentioned above, are not verified, SQP algorithm will in
general fail to converge. One reason is that the correct active
constraints set must somehow be determined. Another is
that the subproblems may be defective because of
incompatible constraints. SQP can be viewed as a Newton-
method and it is known that an unsafeguarded Newton
method is not a robust algorithm. SQP is good in terms of
its local convergence properties but not in terms of
guarantced convergence.

We describe a way to deal with this problem. As the
different solutions of general minimum-time problems arc
usually made of phases with positive and negative
accelcrations, we choose an initial solution of this shape for
[$'klx<N-1- Moreover, experiences show that convergence
was easier if the initial solution is continuous and satisfy ug
= 0 and uf =ug . So, we finally choose an initial solution
X0 of fifth order polynomial shape, varying from umax to
-umax. The number of discretization points and umax are
user dependable parameters. 1 is obtained such as s(T)=s¢.
The optimal times obtained respectively for the maximal
velocity limit curve method and the one we propose, are
T=1.2 s and T=1.4 s. Moreover, the suboptimal method of
[PLUM] gives T=2.4s. When the objective function is a
weighted time energy function, the maximal velocity limit
curve method cannot be used. Using our method, the final
time for 7=0.1 is T=3.4 s and for =0.5 is T=59 s.

Figures 2,4,6,8 represent respectively the torques for the
maximal velocity limit curve method, the one we propose
for ==0 and n=0.1, and [PLUM] method while figures 3,5,
7.9 represent the related joint accelerations versus time. All
these figures show the importance of the DC actuators
constraints, particularly for the primary degrees of freedom,
for which the motors are more powerful, with non
negligeable resistance and inductance .

Although the boundary conditions are specified for zero
speed and acceleration at the end points, the method is

applicable to any arbitrary boundary conditions on these
states.

5-2 Discussions

The maximal velocity limit curve method gives good results
for simple cases. The forward and backward integration must
be done with a very low period. Moreover, on a singular arc,
the search must be very precise. The nature of possible
switching points being very different (tangency,
discontinuity and critical), the behaviour of the robot in
these points is also very different. The implementation of
the algorithm involves the determination of many precision
parameters, depending on each followed path. This
determination takes a certain amount of time and needs some
experience. Velocity and torques constraints are not
sufficient to ensure a safe behavior of the robot, in some
cases, this algorithm gives an infinite curvilinear
acceleration and thus the real actuators constraints are not
fulfilled.
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In the anthors knowledge, weighted time-energy problem is
solved for the first time and the obtained results are original.
Solutions are smoother than for minimal time approach. As
= grows from O to 1, the motion is slower as it takes more
time to be performed. The minimal energy approach may be
very interesting in some cases. The method is applied to a
two link manipulator driven by DC motors. It is however
applicable to general multi degrees of freedom systems,
driven by actuators such as pneumatic and hydraulic
actuators and internal combustion engines. Moreover, the
proposed technique is very gemeral and some other
perfonmance indices may be chosen.

VI - CONCLUSIONS

This paper counsiders a solution to the problem of moving a
manipulator, with weighted time-energy performance index
along a specified geometric path subject to voltage and
current constraints, taking into account the viscous friction.
The motion generation algorithm uses the solution of an
optimal problem to find the predicted arrival time as well as
the joint acceleration, velocity and position versus time. The
obtained trajectory is twice continuously differentiable. In
contrast to traditional methods in which the count of the
control steps is chosen as the variable and an exhaustive
sequential search is used to find the minimum time, the
proposed approach considers the sampling period as a
variable. The optimization problem is solved using NPSOL
software. A weighted time-energy performance index is of
great interest since it allows the use of smooth controls
while existing methods are only time-optimal ones. We
propose some comparison remarks.
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