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Abstract : 
The optimal motion gemtion problem is solved subject to 
actuator constraints while the motion is constrained to an 
arbitrary path. The considered objective function is a 
weighted time energy function. Existing methods consider 
only the time-optimal problem. We present some 
simulation results using a mathematical programming 
technique (Sequential Quadratic Programming) existing in 
the software NPSOL. Then a comparative study is made 
between existing methods and the proposed technique. 

I - INTRODUCTION 
Motion along a predefined path is common in robotics, for 
instance in the case of spraying, cutting or welding. It is 
natural to look for an optimal solution along the path 
[VANW]. Tbe path is given from the application and a fust 
step is to obtain a nominal motion specfication. A required 
path is normally expressed analytically in Cartesian space. 
Thc resulting trajectory can be expressed either in Cartesian 
space or joint space and the advantages and disadvantages of 
eilher representation are consistent with the interpolation 
method [PLED]. The geometric path does not contain any 
timing information but includes only spatial positions and 
orientations. When a continuous correspondence is made 
between a trajectory described in Cartesian space and joint 
space, problems may appear related to workspace and 
singularities. The trajectory must be planned so as to remain 
in the manipulator workspace. In this case, path generation 
in joint space could be easily executed but a Cartesian 
trajectory would fail. In this paper, the emphasis is put on 
the optimal planning of manipulators trajectories, in joint 
space. The trajectory must be optimal with respect to a 
weighted timeenergy performance index. 
For rigid robots, the minimal time optimization along a 
predefined path can be solved using phase-plane techniques. 
The optimization algorithm ([BOBRJ, [SHE]) is a tractable 
way to obtain the minimum-time solution. This algorithm 
however cannot be extended to the case under interest, the 
objective function being a weighted time energy function. 
The detcnnination of the desired robot motion as a function 
of time involves a nonlinear optimal control problem. The 

optimization problem considers the generally non linear 
robot and actuators dynamics. We will focus on 
manipulators actuated by DC motors. DC motors operate 
over a wide speed range and have excellent control 
clnmuistics. 
The remainder of this paper is divided into five sections. 
Modelling is introduced in the following paragraph. Then 
some existing methods are presented in the third section, 
while a nonliwu programming technique is introduced in 
the fourth paragraph. After that, some simulation results are 
presented in the fifth sixtion and some discussions given. 
Finally, general coaclusions are given in the last paragraph. 

II - MODELLING 
2-1 manipulator model 
For a manipulator with n joints, the dynamic model can be 
expressedusingtbeLagrangiauequationas: 

r i  = L i j  (4) ' ~ i  +Gi(q) + &ij (4) pj 

+ ZBi jm (9) Qj Qm i=l, ..., n (1) 

n n 

j = l  j = l  
n 

j=1, m=l 
where the n x 1 vectors q, q and q are respectively the joint 
position, velocity and acceleration, the n x 1 vector r is the 
joint input torque, G is the n x 1 gravitational force vector, 
B is the n x n x n Coriolis and Centrifugal force matrix, F 
is the viscous friction and A is the n x n inertial matrix. 

2-2 actuator model 
In a permanent magnet DC motor [TAHB], the magnetic 
field is developed by permanent magnets. For a non- 
redundant multi-degrees-of-freedom robot, there are usually 
as many actuators as the number of degrees-of-freedom. The 
actuator dynamics, giving the voltage U as a function of the 
current1. canbecl"& a inamauixfonnas: 

U = L f  + R I + K  q 

where L, R and K are square regular diagonal maaices with 
respectively inductance, resistance and torque constant 
elements at tbeir diagonals. 

2-3 path description 
"he pa& describes the robot motion in space. In practice, 
analytical function are seldom directly available. Usually, 
the path is specified as a finite number of points which have 
to be crossed in a given order [PLED]. Assume the path is 
repsentedasaparametetizedcurve: 
q = ds) (3) 
where s is a scalar path parameter. A trajectory is obtained 
from the path g(q(s)) = 0, by specifying the path parameter 
as a function of time. The function s(t) is defincd on the 
inurval [O,n where s(O)=so and s(T)=sf. Since we assume 
that the path is fixed, i.e the function q(s) is given, the 
trajectory q(s(t)) can be rcprescntcd by the path parameter 
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s(t). We assume that the path parameter s(t) is piecewise 
twice differentiable with respect to t. Further, we only 
consider trajectories which represent faward motion along 
the path. The assumption s(t) >O implies that S(t) can be 
expressed as a function of s(t). This function is called the 
velocity profile and is denoted v(s). 

III EXISTING METHODS 
3.1 In trod oc tion 
Most motion generation laws are developed based on 
kinematical constrainu, obtained for the most unfavorable 
configurations. Thus, to define maximal torques, 
acceleratioIls and velocities, we may write: 
r- = K 1- and neglecting all the dynamic terms apart 
inertial 00es in (1). '&ax = (K Imax) / IA I,,,. &SO, 

neglecting L in (2) gives: 
&ax = (U-- RI-) / K 
The detennination of theses values allows to propose simple 
motion generation laws. Some examples are given in 
W M B ]  : bang-bang or polynomial laws for point to point 
motion or a trajectory crossing some given points. 
[PLUM] has proposed a suboptimal law with respect to 
maximal torques. From a given trajectory, a temporal 
scaling is applied to obtain a new trajectory respecting the 
maximal torques constraints. 

(4) 

3.2 Maximum velocity limit curve method 
3.2.1 rewriting the robot dynamics 
Equation (1) can be written as: 
r = A~(s)P+B~(s~~+F~(s)S+G~(S) = Al(s) P + A~(s, S) 
where : Al(s) = A(q(s)) QS Fl(d = FY(q(S)) 9s 
Bib) = qs-(q(s)) qs+A(q(s)) 9ss Gl(S)= G(q(s)) 
A2(s, S) = Bl(s) S2 + Fl(s) S + Gl(s) (5) 
where qs is the unit vector tangent to tbe path and qss is the 
curvature vector obtained by differentiating qs with respect 
to s. The pammeters Ai, B1, F1 and GI are path specific, 
representing the in& and Centrifugal-Coriolis, gravity and 
friction forces reflected at the joints for a given point along 
the path. 

3.2.2 maximum velocity limit curve method 
The consvainu which are obtained by annbining the torque 
constraints, the robot dynamics and the path constraint, 
provide useful information for the design of the path 
velocity controller. Ignoring the dynamics of manipulators 
during trajectory planning results either in reduced path 
accuracy or a less than minimal traverse. 
The constraints on the toques (Tmin 5 l% r w )  may be 
wtiuen as velocities and acceleration constraints: 

(6) 
.. Smin(S,S)I;KI;'s'max(S,i) and WS!S-(S) 

The velocity limit Smax (s) is defined as the velocity at 
which Kmin =Ymax. The res~lved problem may be written 

as: Min(J= j&) 
T 

0 
( u = S  

subject to : Xmin (S. S) I; U s 'imax (s, S) (7) 1 0 I; 's S ' S ~ = ( S )  
If Ail(s) = 0 for some i, then this actuator does not bound 
the acceleration. ?bus, there is anotha state constraint r w  
I A2(s, S) 5 rm . These pints are oued singular points 
and the corresponding trajectory, singular arc. Their 
existence is tied to the nature of the robot and the path. 
When there exist singular arcs, solutions are bang-coast- 
bang. A switch occurs at tangency, discontinuity and critical 
points. 
The following algorithm was proposed by [SHE]: 
1- From the initial point, integrate forward the maximum 
acceleration, if it reaches the final point, go to step 5. If the 
trajectory hits the limit curve at some point Sh, go to step 
2. 
2 - Search forward for tbe nearest critical or tangency pint, 

3 - From St, integrate backward the maximum feasible 
deceleration until the trajectory crosses the previous 
trajectory at some point, Scr 5 Sh. At this point. the 
trajectory switches from acceleration to deceleration. 
4 - From St, integrate forward the maximum feasible 
acceleration until the trajectory hits the limit curve again. If 
it passes the final point, then proceed to step 5,  otherwise 
go to step 2. 
5 - From the frnal point, integrate backward the maximum 
deceleration until c-.rossing the previous trajectory. 
The result shows that for conditions that are typically 
satisfied, the time-optimal solution is bang-bang in the 
sense that at least one torque is always at the limit. 

s t  2 sh  . 

IV - GENERAL MOTION GENERATION 
PROBLEM 
4-1 optimal problem formulation 
The capabilities of a DC motor are mainly limited by the 
heat generation and dissipation characteristics. The actuator 
constraint limits the torque (or force) applied to each link. 
This limitation will result in bounds on joint speeds and 
accelerations. The state and control variables are respectively 
chosen to be : x = [s, S, SIT and U = P', so the differential 
equation describing the system is given by: 

X=Ax+Buwhere A= 
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tbe controlled system is a linear one. However, the other 
fundions involved are highly nonlinear ones. 
Tbe optimization of the motion along a specified path can 
be stared as the following problem 

Min 

Subject to 

- state (position) constraint : 

- actuators limitatim: 

T 
J = / [ (1-x) + x U(t) I(t) ] dt  (8) 

-dyoamicalmodel: X = A X + B U  (9) 

g(q(s)) = 0; dOWP S O s f  (10) 

-1mS I I 5 I- -U- I U I  Imax (11) 

(12) 

I T  

where Imax, Dimax and Ieff are respectively the maxi" 
absolute values of the motor current instantaneous value, 
slew rate and square mean value and Umax is the maximum 
absolute value of the voltage supply. The parameter IE is 
chosen by the user to give more or less weight to time or 
energy. All the actuators limitations may have a unified 
representation: 
S(X(t),U(t)) I; 0 (14) 

4-2 resolution method 
4-2-1 introduction 
In theory, any optimal control problem can be solved 
analytically by employing Pontryagin's minimum principle. 
However, it is impracticable to do so if the dimension of tbe 
state vector is higher than two. In optimal control, there are 
ditea and indireot solution methods. Direct means to affect a 
control history directly by varying a f i t e  set of defining 
parameters. Indirect means to solve tbe two point bwndary 
value problems Coostituted by tbe ~~ecessary conditions of 
optimality. Such methods are for example: Differential 
Dynamic Programming technique [BEST], or multiple 
shooting technique [BRYS]. However, they require an a 
priori identification of singular arcs. 
Therefore as p-actical alternatives, many numerical methods 
have been developed. All of the available numerical methods 
first discretize the given continuous system with a fixed 
sampling period. The period should be small enough so that 
no significant discretization error is introduced. Then the 
minimum count of the control steps are searched for, under 
control constraints, such that the system reaches the desired 
final state. Since in the discrete domain, the number of 
variables (control steps) is itself a variable, this problem can 
only be considered by solving exhaustively a sequence of 
fixed time problems. Tbe difficulties of this method lie in 
the mechanism of sequencing the fmed time problems and in 
knowing when to stop ([CHUNI). 

AootherdiffiityYthe~dfsaetizetben-sear&mubodis tbe 
cwnicting effect dtbe sampling period on the dixretization 
error and on the complexity of the optimizatioo problem. 
Since the f d  time is fued for the original continuous 
system, although it is unknown yet, it should be equal to 
the product of the sampling period usedin the disaetization 
and the Count of the control steps found in the optimization. 
Thus, if the sampling period is reduced for be* accuracy, 
then the minimum count of the control steps increases 
inversely. This makes tbe search iteration count long, and 
the problem size becomes Lugex near the end of the search 
process. In order to avoid the exhaustive iteration a d  to 
overcome the conflicting effect of the sampling period for 
tbediscretizationemKandontheoomputationalcomplexity, 
this paper fixes tbe count of tbe control steps and treats the 
sampling period for the discretization error as an 
optimization variable. The optimization process 
the sampling period. Any change of the sampling period 
duringtheoptimization changes the dynamics of Ibe discme 
system which is a counterpart of the original continuous 
system. Since tbe usual optimization process is performed 
on a system whose dynamics ate fixed, the proposed 
approach seems unreasonable. However, the goal of 
optimization is not only to reduce the sampling period 
itself, thus reducing tbe control time (the product of the 
count of the control steps and the minimum sampling period 
obtained in the optimization), but for the discrete counteapart 
to best appmximate the original continuous system. 

4-2-2 Discrete counterpart 
With a period s being a very small coostant, Euler's f m t  
order approximation of the time derivative of the smte vector 
is given as: x(t)c(x(t+~)-x(t)). This gives a discrete state. 

where xi= x(i T) and ui= u(i 7). Solving it gives the state 
expression at general rime k in terms of the initial state and 

equation : X i + l =  (r + T  A) x i + T B  ui 

tbeinmmedme inputsas: 
k- 1 

x ~ ( I  + 1: A P  ~g + '5 C (I Bui (15) 
i=O 

With this discretization, the original problem is restated in a 
new manner. If the original continuous system has a 
(theoretical) optimal time T, the minimum count of the 
discrete control steps will be: N = IntCr/.s)+l. Considering 
the sampling period as a variable, this problem is 
transformed into a discrete form as follows: 
x = [q, U l ,  ..., UN-l,7] with dim(* N+1 (16) 

Tbe @ o m  index: (I-X) (N-2)r + x 'C c u i  Ii  (17) 
N-1 

i=O 
The equality constraints: 

N-2 
Xf - (I + z AP-2 ~g - '5 (I + z A ) ~ - ~ - ~  Bui = 0 (18) 

i=O 
Tbe inequality constraints: 
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Sa@))  I 0 ; - sk I 0 for all kSN-1 ; - T I 0 (19) 
Numerous simulations were performed using the NPSOL 
software [GILL]. NPSOL uses the Sequential Quadratic 
Programming (SQP) technique which belongs to the class of 
Projcctcd Lagrangian methods [GILL]. This class includes 
algorithms that contain a quence  of linearly constrained 
subproblems based on the Lagrangian method. The idea of 
linearizing nonlinear constraints occurs in many algorithms 
for non linearly constrained optimization including the 
rcduced gradient typc methods. The subproblems involves 
the minimization of a general non linear function subject Lo 
linear equality constraints and can bc solved using an 
appropriate technique [GILL]. Thc choiw of solution method 
will dcpcnd on the informalion available about the problem 
functions (i.e the level and cost of derivatives information) 
and on the problem size. For our concrete problem, we have 
given the gradicnts of the functions computed with the 
MAPLE software, to the NPSOL program. 

V - SIMULATION RESULTS 
5-1 simulations 
The algorithm was applied to a two-degree-of-freedom robot 
(sce figl). 

figure 1 
The proposcd path, &fined by four crossing points, is 
represented by parts of fifth degree s-polynomials. Table 1 
gives the crossing points coordinates: 

Table 1 
The dimension of vector X is chosen to be 91, There exists 
thcn 633 constraints. The bounds of the voltage and current 
are assumed respectively to be: 

~max=(30,20)T~ Imax= (lO,lO)TA 
Ieff=(12,10)TA Dimax=( lfl,l fl)A/s 

This gives the following torques bounds: 
Tmax=(14.38,11.26)TNm and rmin=-rmax 
Most of the nonlinear programming algorithms require a 
feasible solution set of the optimization variables to start 
the optimization. However, in many cases, it is difficult to 
find a feasible solution. It is known from SQP that it 
converges quadratically if the initial estimate is sufficiently 
close to the solution and the hessian of the Lagrangian is 
positive semi-definite. When the restrictive conditions 

mentioned above, are not verified SQP algorithm will in 
general fail to converge. One reason is that the correct active 
constraints set must somehow be determined. Another is 
that the subproblems may be defective because of 
incompatible constraints. SQP can be viewed as a Newton- 
method and it is known that an unsafeguarded Newton 
method is not a robust algorithm. SQP is good in tenns of 
its local convergence properties but not in terms of 
guaranteed convergence. 
We describe a way to deal with this problem. As the 
different solutions of general minimum-time problems arc 
usually made of phases with positive and negative 
accelcrations, we choose an initial solution of this shape for 
[ s 'k ]m- l .  Moreover, experiences show that convergence 
was easier if the initial solution is continuous and satisfy ug 
= 0 and uf =ug . So, we finally choose an initial solution 
XO of fifth order polynomial shape, varying from umax to 
-umax. The number of discretization points and umax are 
user dependable parameters. 'F is obtained such as s o s f .  
The optimal times obtained respectively for the maximal 
velocity limit curve method and the one we propose, are 
T=1.2 s and T=1.4 s. Moreover, the suboptimal method of 
[PLUM] gives T=2.4s. When the objective function is a 
weighted time energy function, the maximal velocity limit 
curve method cannot be used. Using our metbod, the final 
time for d . 1  is T=3.4 s and for d . 5  is T=5.9 s. 
Figures 2,4,6,8 represent respectively the torques for the 
maximal velocity limit curve metbod, the one we propose 
f o r d  and d.1, and [PLUM] method while figures 3 3 ,  
7,9 represent the related joint accelerations versus time. All 
these figures show tbe importance of the DC actuators 
constraints, particularly for tbe primary degrees of f", 
for which the motors are more powerful, with non 
negligeable resistance and inductance. 
Although the boundary conditions are specified for zero 
speed and acceleration at tbe end points, the method is 
applicable to any arbitrary boundary conditions on these 
States. 

5-2 Discussions 
The maximal velocity limit c m e  method gives good results 
far simple cases. The forward and backward integration must 
be done with a very low period. Moreover, on a singular arc, 
the search must be very precise. The nature of possible 
switching points being very different (tangency, 
discontinuity and critical), the behaviour of the robot in 
these points is also very different. The implementation of 
the algorithm involves tbe determination of many precision 
parameters, depending on each followed path. This 
determination takes a certain amount of time and needs some 
experience. Velocity and torques constraints are not 
sufficient to ensure a safe behavior of the robot, in some 
cases, this algorithm gives an infinite curvilinear 
acceleration and thus tbe real actuators constraints are not 
fulfilled. 
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In the authors knowledge, weighted timeenergy problem is 
solved for the first time and the obtained results are original. 
Solutions are smoother than for m i n i  time approach. As 
R grows from 0 to 1, the motion is slower as it takes more 
time to be performed. T & " a l  energy approach maybe 
very interesting in some cases. Tbe method is applied to a 
two link manipulator driven by DC motors. It is however 
applicable to general multi degrees of freedom systems, 
driven by actuators such as pneumatic and hydraulic 
actuators and internal combustion engines. Moreover, the 
proposed technique is very general and some other 
performance iodices may becbosen. 

VI - CONCLUSIONS 
This paper considers a solution to the problem of moving a 
manipulator, with weighted time-mergy performance index 
along a specified geometric path subject to voltage and 
current constraints, taking into aOcount the viscous friction. 
The motion g e m "  algorithm uses the solution of an 
optimal p" to find the predicted anival time as well as 
the joint aa&", ' velocity and position vmus time. The 
obtained trajectory is twice Continuously differentiable. In 
contrast to traditional methods in which the count of the 
control steps is chosen as the variable and an exhaustive 
sequential search is used to fmd the minimum time, the 
proposed approach considers the sampling period as a 
variable. The optimization problem is solved using NPSOL 
software. A weighted timeene rgy performance index is of 
great interest since it allows the use of smooth controls 
while existing methods are only time-optirnal ones. We 
propose some cOmpariSOn nmarks. 
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