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Abstract : We are interested in blimps. A blimp is a small airship that has no metal
framework and collapses when deflated. In this paper, dynamic modeling of
autonomous blimps is presented, using the Newton-Euler approach.  This study
discusses the motion in 6 degrees of freedom since 6 independent coordinates are
necessary to determine the position and orientation of this vehicle. 
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1. INTRODUCTION

Unmanned aerial vehicles are a new focus of
research, because of their important application
potential.  They can be divided into three different
types: reduced scale fixed wing vehicles
(airplanes), rotary wing aircraft (helicopter) or
lighter than air (airships). Lighter than air vehicles
suit a wide range of applications, ranging from
advertising, aerial photography and survey work to
surveillance and monitoring tasks. They are safe,
cost-effective, durable, environmentally benign and
simple to operate. Airships offer the advantage of
quiet hover with noise levels much lower than
helicopters. Unmanned remotely-operated airships
have already proved themselves as camera and TV
platforms and for specialized scientific tasks. An
actual trend is toward autonomous airships.
A lighter than air craft is any vehicle that flies
because it is lighter than air. This includes balloons
and airships, also known as dirigibles. What makes
a vehicle lighter than air is the fact that it uses a
lifting gas (i.e. helium or hot air) in order to be
lighter than the surrounding air.  The principle of
Archimedes applies in the air as well as under
water. The difference between airships and balloons
is that: balloons simply follow the direction of the
winds. In contrast, airships are powered and have

some means of controlling their direction. Non rigid
airships or blimps are the most common form
nowadays. They are basically large gas balloons.
Their shape is maintained by their internal
overpressure. The only solid parts are the gondola,
the set of propeller (a pair of propeller mounted at
the gondola and a tail rotor with horizontal axis of
rotation) and the tail fins. The envelope holds the
helium that makes the blimp lighter than air. In
addition to the lift provided by helium, airships
derive aerodynamic lift from the shape of the
envelope as it moves through the air. The most
common form of a dirigible is an ellipsoid. It is a
highly aerodynamically profile with good resistance
to aerostatics pressures.
A mathematical description of a dirigible flight
dynamics needs to embody the important
aerodynamic, structural and other internal dynamic
effects (engine, actuation) that combine to influence
the response of the blimp to the controls and
external atmospheric disturbances. The blimp is a
member of the family of under-actuated systems
because it has fewer inputs than degrees of
freedom. 
In some studies such as [1, 2, 6, 9], motion is
referenced to a system of orthogonal body axes
fixed in the airship, with the origin at the center of
volume assumed to coincide with the gross center
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of buoyancy. In this paper, the origin of the body
fixed frame is the center of gravity G.
The paper is organized as follows. Kinematics and
dynamics are the subject of the second section
while the dynamic model is adapted for control
purposes in section three. Finally, some conclusions
and perspectives are presented in the last section.

2. AIRSHIP DYNAMIC MODELING

In this section, analytic expressions for the forces
and moments on the dirigible are derived. The
forces and moments are referred to a system of
body-fixed axes, centered at the blimp center of
gravity. There are in general two approaches in
deriving equations of motion. One is to apply
Newton’s law and Euler’s law which can give some
physical insight through the derivation. The other
one is more complicated, it provides the linkage
between the classical framework and the
Lagrangian or Hamiltonian framework. In this
paper, applying Newton’s laws of motion relating
the applied forces and moments to the resulting
translational and rotational accelerations assembles
the equations of motion for the 6 degrees of
freedom. We will make in the sequel some
simplifying assumptions : the vehicle is rigid and
the earth fixed reference frame is inertial, the
gravitational field is  constant, the airship is
supposed to be a rigid body, meaning that it is well
inflated, the density of air is supposed to be
uniform, and the influence of gust is considered as a
continuous disturbance, ignoring its stochastic
character. The buoyancy system lifetime will be
limited by a number of components and factors.
Included is the corrosion of unprotected airship
skin, degradation of the airship skin due to thermal
cycling and temperature exposure and buoyant gas
leakage. High temperature will increase
permeability of the airship skin and increase
leakage. Introducing these factors into the dynamic
model would result in very complicated partial
differential equations.

2.1. Kinematics.

Two reference frames are considered in the
derivation of the kinematics and dynamical
equations of motion. These are the Earth fixed
frame fR and the body fixed frame mR . The
position and orientation of the vehicle should be
described relative to the inertial reference frame
while the linear and angular velocities of the
vehicle should be expressed in the body-fixed
coordinate system [4, 7].
The origin C of mR coincides with the center of

gravity of the vehicle. Its axes ( )ccc ZYX are
the principal axes of symmetry when available.

They must form a right handed orthogonal normed
frame.  

The position of the vehicle C in fR can be

described by : 
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While the orientation is given by 
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with  φ Roll, θ pitch and ψ Yaw angles.

Let )3(SOR ∈ denote the orthogonal rotation
matrix that specifies the orientation of the airship
frame relative to the inertial reference frame in
inertial reference frame coordinates. SO(3) is the
special orthogonal group of order 3 which is
represented by the set of all 3*3 orthogonal rotation
matrices that characteristics are :

1)det(3*3 == RandIRRT  eq 3

I3*3 represents the 3*3 identity matrix.
The orientation matrix R is given by:  
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Where ( )θθ cos=c and ( )θθ sin=s
This description is valid in the region
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ππθ .

If we use the manipulators formulation, at each
instant, the configuration (position and orientation)
of the airship can be described by an homogeneous
transformation matrix corresponding to the
displacement from frame fR to frame mR . The set
of all such matrices is called SE(3) [10], the special
Euclidean group of rigid-body transformations in
three dimensions.
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SE(3) is a Lie group. 3ℜ represents the set of 3*1
real vectors and  3*3ℜ the set of 3*3 real matrices.

Let’s introduce  
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 as the angular velocity

expressed in mR .
The kinematics of the airship can be expressed in
the following way :
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This formulation is used for underwater vehicles as
well.
If we use the metric formulation, the tangent space
of SE(3), denoted by se(3) is given by:
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where sk(Ω) represents the skew-matrix :
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This matrix has the property that for an arbitrary
vector 3ℜ∈U

UUsk ×Ω=Ω)( eq 10

× : represents the cross vector product in 3ℜ .
This tangent space se(3) has the structure of a Lie
algebra. 

2.2. Dynamics.

The dynamics model is defined as the set of
equations relying the situation of the vehicle in its
position, velocity and acceleration to the control
vector.  The translational part is separated from the
rotational part. As the blimp displays a very large
volume, its virtual mass and inertia properties
become significant. 
The dynamic model of the autonomous dirigible is
expressed in the body fixed frame as:
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where 

1ηTRX = eq 12

represents the position in the body fixed frame.
m : is the mass of the airship, the propellers and

actuators.
M : is the 3*3 mass matrix and includes both the

airship’s actual mass as well as the virtual



mass elements associated with the dynamics
of buoyant vehicles.

I  : is the 3*3 inertia matrix and includes both the
airship’s actual inertias as well as the virtual
inertia elements associated with the dynamics of
buoyant vehicles, with respect to G .

Diag(DV) : The 3*3 aerodynamics forces diagonal
matrix.
Diag(DΩ) : The 3*3 aerodynamics moments
diagonal matrix.

21 FandF : Vector of propulsion forces
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3e unit vector.

B 3e   :   The 3*1 buoyancy force vector. gB ∆= ρ
where ∆ is the volume of the envelope, ρ is the
difference between the density of the ambient
atmosphere ρair and the density of the helium  ρhelium
in the envelope, g is the constant gravity
acceleration.

_____
GPi  represents the position of the ith propeller.

The terms MV×Ω and Ω×Ω M  show the
centrifugal and Coriolis components.

The radiation induced forces and moments can be
identified as the sum of three components [3] :
- Added mass due to the inertia of the

surrounding fluid,
- Radiation induced potential damping due the

energy carried away by the wind,
- Restoring forces due to Archimedes (weight

and buoyancy).
Added mass should be understood as pressure –
induced forces and moments due to a forced
harmonic motion of the body which are
proportional to the acceleration of the body. In
order to allow the vehicle to pass through the air,
the fluid must move aside and then close behind the
vehicle [8]. As a consequence, the fluid passage
possesses kinetic that it would lack if the vehicle
was not in motion. 
The mass of  the dirigible is  assumed to be
concentrated in the center of gravity
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zyx ZYX ,,  are the virtual mass terms of X, Y, Z
axes respectively.
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zyx NMK ,,  are the virtual inertia terms of X, Y,
Z  about GX, GY, GZ axes respectively.
The mass and inertia matrices are positive definite.
 We will assume that the added mass coefficients
are constant. They can be estimated from the inertia
ratios and the airship weight and dimension
parameters.

The aerodynamic force can be resolved  into two
component forces, one parallel and the other
perpendicular to the direction of motion [5]. Lift is
the component of the aerodynamic force
perpendicular to the direction of motion and drag is
the component opposite to the direction of motion.
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eq 16

For a slow moving object in the air, we can assume
a linear relationship between the speed and the
drag.
The gravitational force vector is given by the
difference between the airship weight and the
buoyancy acting upwards on it:
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The gravitational and buoyant moments are given
by:
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where ( )bbb zyxBG =
____

represents the position of the center of buoyancy
with respect to the body fixed frame. 

2.3. Propulsion 



Actuators provide the means for maneuvering the
airship along its course. A blimp is propelled by
thrust.  Propellers are designed to exert thrust to
drive the airship forward. The most popular
propulsion system layout for pressurized non rigid
airships is twin ducted propellers mounted either
side of the envelope bottom. Another one  exists in
the tail for torque correction and attitude control. A
propeller consists of a certain number of blades
rotating about an axis. Six blades per propeller are
considered to be the minimum required to produce
smooth and continuous thrust without excessive
turbulence and inter-blade flow interference.
Required power to keep a position against winds
increases in proportion to the wind velocity cubed.
In aerostatics hovering (floating),  its stability is
mainly affected by its center of lift in relation to the
center of gravity. The blimp’s center of gravity can
be adjusted to obtain either stable, neutral or
unstable conditions. Putting all weight on the top
would create a highly unstable blimp with a
tendency to roll over in a stable position.
In aerodynamics flight, stability can be affected by
fins and the general layout of the envelope.
Control inertia can be affected by weight
distribution, dynamic (static) stability and control
power (leverage) available. 
The best way to obtain a well behaved and easy to
control blimp in real time is :
• to reduce control inertia by putting all weight

as centered as possible (main concentration
close to the center of gravity).

• to increase control power, propellers should be
far away from the center of gravity for
maximum leverage.

• to maximize stability around ‘unwanted’
degrees of freedom (mainly the roll angle and
velocity), the propellers should be installed
such that the ‘unwanted ‘ degrees are not
controlled.

If the compensating thrust system is found to be
impratical, or only partially effective, the airship
must move laterally. 
A blimp is an under-actuated system with two types
of control : forces generated by thrusters and
angular inputs controlling the direction of the
thrusters ( γ is the tilt angle of the propellers):
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where TM and TT represent respectively the main
and tail thrusters.

Thus in building the non linear six degrees of
freedom mathematical model, the additional
following assumptions are made :
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If we consider the plane XZ as a plane of
symmetry, the mass and  inertia matrices can be
written as :
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If the center of gravity sits below the center of
buoyancy, then 
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The approach and landing, ground
maneuvering and masting phases of flight demand
the highest degree of control precision. However,
due to the airship’s susceptibility to gusts and
thermals, its inherent aerodynamic instability and
the evaporation of aerodynamic control at low
airspeeds, the control system must accomplish these
tasks at a time when the control over the airship is
greatly reduced. The problems associated with gust
sensitivity and aerodynamic instability are
fundamental to ellipsoidal airships. One of the
current principal challenge is the development of
quiet, high efficiency propulsion systems. Any
airship designed to achieve near-autonomous mast-
docking must have significant mass dedicated to
low speed handling. In order to estimate the
performance of any airship, it is necessary to
estimate the cruise drag coefficient and propulsive
efficiency. In general, the thruster force and
moment vector will be a complicated function
depending  on the vehicle linear and angular
velocity and the control variables. However, under
some assumptions, a linear form can be proposed.
In addition, most thruster systems are driven by
small DC motors designed for aerial operating
conditions. Dynamics of  the DC motor should also
be included in the dynamics.

It is important to gain insight into the geometric
structure of the equations since this knowledge can
be useful in areas such as motion planning and
control.  Important issues for mission planning are
recovery and safety.



3. ADAPTING THE DYNAMIC MODEL
FOR CONTROL DESIGN

In this section,  the above dynamic model (eq 11) is
considered and a new equivalent model is derived,
which is more convenient to work with for the
purposes of control design.  Equations  (11) provide
a full dynamic model of the blimp under
consideration.  However,  from a control
perspective, the equations are complex and
difficult to work with.  The system dynamics
become much simpler to understand if the
relationship between  principal forces and torques
is solved . In the dynamic equations of the system
(eq 11), consider solely those forces and torques
corresponding directly to the forces applied by the
thrusters.  
In the translation dynamics, the generated forces are

( ) ( ) 321 .cos..sin eTeTeTF MTM γγ ++=

eq 24

where 321 ,, eee are unit orthogonal vectors (a
base).
In the rotation dynamics, the torque contributions
from the thrusters are : 
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where the third component of translational forces 

( )γcos3 MTf = eq 27

Thus, the translation force can be rewritten in a
form consisting of  three terms. The third
component corresponds intuitively to the force
necessary to sustain the dirigible in stationary  (or
neutral ) flight. Control input for longitudinal and
lateral  translation dynamics must be achieved by
re-orienting the dirigible, using torques.  
Blimps are members of the family of non-
holonomic systems, characterized by acceleration
level equality constraints. The longitudinal, vertical

and pitch equations are related through a constant
parameter, and the lateral equation is related to the
yaw equation.

4. CONCLUSIONS

In this paper, we have discussed dynamic modeling
of small autonomous blimps. Blimps are a highly
interesting study object due to their stability
properties. Llike the helicopter, they possess
different properties depending on their flight
modus. 
Here, motion is referenced to a system of
orthogonal body axes fixed in the airship, with the
origin assumed to coincide with the center of
gravity. The equations of motion are derived from
the Newton-Euler approach. In classical
aerodynamics study, the rigid body frame axes are
taken as the wind axes.  Although the model
defined below does not correspond to any specific
airship, it exhibits the general qualitative
characteristics. 
The airship is supposed to form a rigid body so that
aero-elastic effects can be ignored. We did not
discuss the case of a partially inflated blimp. 
We have chosen a classical propulsion mode. Other
kind of propulsion could be used such as a system
of differential propellers with different tilt angles.
Another formulation of the equations of motion
using quaternions is actually under study. This
formulation is useful because it exhibits no
kinematics singularity.
After establishing the equations of motion of
blimps, some questions arise :
- What are their controllability and stabilizability

properties?
- How can trimming trajectories be generated for

different flight operating modes?
- How can closed loop control systems be

solved?
Finding answers to these questions is a part of our
actual work.
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