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Motion Generation and Adaptive Control Method of
Automated Guided Vehicles in Road Following

Lotfi Beji and Yasmina Bestaoui

Abstract—Dynamics of automated guided vehicles (AGVs) are
described by a nonlinear nonholonomic model with two inputs:
the rear axle torque and the steering angle torque. This model uses
integrated longitudinal and lateral behavior. The first part of this
paper is concerned with motion generation, taking into account
kinodynamics and motor’s constraints. Usual kinematics con-
straints are not always sufficient to provide feasible trajectories;
thus, we focus on velocity limitation and the motor’s current and
slew rate constraints. Optimal velocity is determined for AGVs
along a specified path with a known curvature. The main result
concerns the realistic situation when the parameters of the model
describing the movement of the vehicle are not well known. A
nonlinear strategy is proposed to ensure control of the vehicle even
if the knowledge of the AGV’s constant parameters is not perfect.
The proof of the main result is based on the Lyapunov concept
and the proposed results are illustrated by simulations and some
comments.

Index Terms—Automated guided vehicles (AGVs), longitu-
dinal–lateral dynamics, motion generation, nonlinear adaptive
control.

I. INTRODUCTION

THE STUDY of the automated guided vehicle (AGV) be-
havior and effect of the various design parameters when

moving on the plane practically occupies a central place in the
automobile theory. This paper addresses the problem of auto-
mated road following: automatic movement along a given path.
While an automated vehicle travels at a relatively low speed,
controlling it with only a kinematics model may work. However,
as automated vehicles are designed to travel at higher speeds,
dynamics modeling becomes important. An important charac-
teristic of many of the studies concerning the automated vehicle
modeling and control [3], [4], [17] is that they deal only with
some simplified low-order linear models. These models are too
simple for studying the integrated longitudinal and lateral dy-
namics. Traditionally, the nonlinear model is considered to be
useful in a simulation environment, while the linear model is
used for control design. We are interested in control design for
an automated vehicle represented by a full-order nonlinear non-
holonomic model.

More precisely, in this paper we consider a rigid vehicle
moving at a high nonconstant speed on a planar road. As the
speed of this vehicle is not slow, the wheels must move with
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suitable sideslip angles to generate cornering forces [7]. The
interaction between longitudinal and transversal forces due
to the tires as well as the nonlinear nature of these forces are
taken into account. The presence of the suspension is neglected.
Consequently, the roll and pitch angles are not considered
here. However, the suspension design must be considered in
the comfort analysis. As the car is supposed symmetrical with
respect to plane, a two-axle vehicle can be considered.
The wheels are assumed to be exactly parallel and to have the
same radius and sideslip angle and, hence, to rotate at the same
speed. In our analysis, as a single-track model of the vehicle
will be considered, some simplification holds, as the model can
be linearized, at least as far as the trigonometrical functions
of the various angles. Hence, the single-track approach is best
suited to linearized models and, therefore, to the linear control
theory [7], [17]. However, with the realistic situation when
the parameters of the model are not perfectly known and, in
order to give a consistent estimation to the AGV’s parameters,
a linear model will be secluded in this paper.

For kinematics models, the stabilization problem has essen-
tially been solved with two types of control laws: time-varying
piecewise continuous control and time-varying continuous con-
trol. For dynamics models, based on the nonlinear couplings
and the feedback linearization technique, Freund and Mayer [6]
have used this principle to create a linear behavior that allows
free pole placement for vehicle control. It is well known that this
technique is sensitive to uncertainties. In [17], the vehicle equa-
tions are given in a simple form where the aerodynamic forces
are not considered. The model given in [17] exhibits the form of
Lorenz equations, which describe a liquid convection. Thus, the
problem of studying the vehicle behavior is put into the same
row with problems of hydrodynamics and the chaotic behavior
of the car is outlined. Unfortunately, there are no regular and
effective methods of stability analysis for the nonlinear model
of an AGV, such as in the linear case. The Lyapunov method
for the stability analysis of nonlinear systems can be useful in
this situation. Previous works, such as [7] and [11], highlight
the contribution of the internal variables such as the rotation an-
gles and velocities of the wheels into dynamics model. In this
paper, both the vehicle nonlinear kinematics and dynamics are
integrated into the state–space formulation.

As a first step, kinodynamics are integrated into motion gen-
eration, assuming that the path curvature is known. A path is
specified by its geometry , and its motion
trajectory through a function , , where is the
length of the path and is the total motion time. While exten-
sive work has focused on computing the geometric path [8], [9],
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[13]–[15], little attention has been given to selecting the optimal
motion. For the temporal part of the trajectory, most controllers
currently use the trapezoidal speed profile. This method is suit-
able only for tracking straight lines with single-stage constant
speed. Optimal velocity is determined along a specified path
with a known curvature, such as a straight line, a circle arc, a
clothoid, or a cubic spiral. Other paths could be used [2].

As a second step, an adaptive control method is proposed
using integrated longitudinal and lateral dynamics. Some pa-
rameters of the dynamics are considered to be uncertain. Interest
in the adaptive control of nonlinear systems was stimulated by
major advances in the differential geometric theory of nonlinear
feedback control. A thorough treatment of this theory was given
by Kristic [10].

This paper is organized as follows. The modeling part of di-
rect current (dc)-actuated vehicles is presented in Section II.
Section III deals with motion generation that introduces the cur-
vature of the path into the kinodynamics model. In Section IV,
the proposed nonlinear adaptive-control scheme allows an esti-
mation of the unknown vehicle’s parameters. Simulation results
are introduced in Section V, while some conclusions are given
in Section VI.

II. MODELING

A single-track model that includes the transverse and longi-
tudinal AGV dynamics and neglects roll and pitch angles [6]
is considered in this paper. The guidance system operates the
steering wheel, causing some wheels to work with a sideslip
and to generate lateral forces. These forces cause a change of
attitude of the vehicle and then a sideslip of all wheels. The re-
sulting forces bend the trajectory [6]. The important dynamical
variables are the vehicle orientation (yaw angle), the longitu-
dinal velocity , and the sideslip angle . In normal road condi-
tions, particularly if radial tires are used, the sideslip angles be-
come large only when approaching the limit lateral forces [16].
The actual position of the center of gravity is determined by
the Cartesian coordinates and in the absolute position. The
quantities and represent the front and rear aerodynamic
side forces, respectively. The rear and front longitudinal forces

and , respectively, result from the powertrain and brakes.
The front aerodynamic drag forces are defined by . Let de-
note the steering angle at the front wheels. The following con-
stants are also used: vehicle mass , moment of inertia , and
the distance between the front (rear) wheels and the ve-
hicle’s center of gravity.

For the study of the AGV interactions, a model that is able
to simulate the behavior of the vehicle must be built. The dif-
ficulties encountered in such a task are so large that different
approaches have been attempted and, until now, there is no stan-
dard driver model that can be used in general. As usual, the
complexity of the model must be chosen in a way that is con-
sistent with the aims of the study and the availability of signifi-
cant input data. Our model is based on the balance of the forces
acting on the vehicle in the longitudinal and lateral directions
(the detail of the forces is given in Figs. 1 and 2), the torques and
kinematic conditions. Using the conventional notations where

denotes the linear velocity and

Fig. 1. AGV parameterization.

the angular velocity, the following nonlinear sixth-order vehicle
model is proposed:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

where is the Euclidean norm and , since
this is a planar motion. The aerodynamic side force on the front
wheel and the aerodynamic side force on the rear wheel
are given by [6]

(8)

(9)

while the front aerodynamic drag force is

(10)

The rear aerodynamic drag force is neglected with respect to the
front one.

The aerodynamic resistance coefficient , atmospheric den-
sity, and the vehicle cross-sectional surface have been in-
cluded. Here, represents the characteristic curves of
the tires, with and , etc. The
characteristic lines include the limitations and the descending
behavior for high values in the argument [6]. As shown in Fig. 3,

and are determined by the same characteristic line, de-
scribing the side-force values of the argument (arg). For small
values of arg (smaller than ), a linear relation of the side
force can be recognized. When values of arg are greater than

, the side force decreases. More details are given in [6].
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Fig. 2. Diagram of the applied forces AGV.

Fig. 3. Characteristic curve of the tires [6].

There are three main sources of nonlinearities: the presence of
products of the variables of motion in the equation, the presence
of trigonometric functions, and the nonlinear nature of forces
due to the tires. All of these nonlinearities are often neglected,
such as in [6] and [7]. There, the steering angle and the sideslip
angles of the wheels and of the vehicle are supposed to be very
small. In our model, the interaction between longitudinal and
lateral forces due to the tires is not neglected.

Let us denote the control torque for the rear axle, which is
given by

(11)

Then, we combine (4), (6), and (11) to obtain (12). As we can
see in these relations, and are eliminated and substituted
by the rear wheels’ torque in order to simplify the tracking
investigation [1].

(12)

where and is the wheels radii. re-
groups the rear axle polar moment of inertia and the motor mo-
ment of inertia. is the front axle polar moment of inertia.

The steering angle of the front wheel is the input for the
vehicle in [6]. However, the real input of the guidance system
is the torque/force applied to the steering wheel, thus giving a
steering wheel angle resulting in the front wheel orientation.
This is the basic idea of our control approach

(13)

is the torque for steering intervention, denotes the gear
ratio, is the inertia moment, and is the viscous friction.
Here, we exclude uses of differential brake and the two wheels’
are assumed to be identical. For vehicle steering intervention
through differential braking, we can refer to Pilutti [12].

The handling of the vehicle can be studied by using these two
equations. Aerodynamics forces are considered in this study;
they introduce a strong dependence on . A similar, but far
less important, effect is due to rolling resistance. The actuator
of the steering column is an electric motor with a dc (available
on certain standard vehicles).

For a permanent magnet dc motor, the torque is proportional
to the armature current . Thus, actuator dynamics can be char-
acterized in a matrix form as

(14)
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with with and . Further, , ,
and are (2 2) regular diagonal matrices representing, re-
spectively, the inductance, resistance, and torque constants of
the actuators. is the motor voltage vector. We assume that
the transmission from the motors to the mechanism is perfectly
rigid, i.e., the transmission does not suffer from backlash or flex-
ibility.

III. MOTION GENERATION

A. Introduction of the Curvature of the Path Into the
Kinodynamics Model

As known from everyday experience, velocity depends on the
curvature of the road. The higher the curvature, the lower the ve-
locity, so the basic idea of this motion generation is to consider
this relationship, not only in the kinematics layer but also in the
dynamics layer. Let denote the vehicle curvilinear abscissa;
then, . The orientation is given by

(15)

while the curvature may be obtained with

(16)

When considering reference trajectories, we have to assume
that the model is perfect and that the situation is ideal, so the
dynamic model can be expressed as (1)–(8)

(17)

with

(18)

where the sideslip angle and velocity are null and the front
longitudinal force is neglected.

From a geometrical reasoning we can deduce that

(19)

For this conventionally driven vehicle, on a given path (in
phase plane), using relations (15)–(19), the equations of motion
are given by

(20)

with

and

B. Problem Formulation

Designing reference trajectories essentially is an optimiza-
tion problem. The minimum time trajectory generation has been
solved in a number of ways, following the usual approach, i.e.,
taking purely kinematics constraints on vehicle velocity and
acceleration as feasible limits. This bound must represent the
global least upper bound of all operating accelerations so as to
enable the vehicle to move under any operating conditions. This
implies that the full capabilities of the vehicle cannot be utilized
if the conventional approach is taken. In this paper, the case of
more realistic constraints is investigated: current and slew rate
constraints. In addition to current saturation, the guided vehicle
also exhibits velocity saturation. This effect is due to back-elec-
tric motor force (emf) generation of the motors that, at high ve-
locity, approaches the power supply voltage of the amplifier. The
inclusion of slew rate limitations smoothes the change of rate of
the current. The general problem of minimum time motion may
be formulated as

Minimize total motion time subject to

(21)

and , , .
is the maximum velocity, is the current, rep-

resents the maximal current, and is the maximal slew
rate. The boundary values are given by , ,

, and . represents the maximum
of the force provided by the motors. Following [5], the con-
straints on the currents or equivalently the torques can be trans-
formed into constraints on the acceleration in the phase plane

(22)

where
if
if
if

(23)

if
if
if

(24)

The maximum admissible velocity value is obtained when
. This defines , taking into account the me-

chanical limitation on velocity. Resolution of these equations
uses forward and backward integration. These equations allow
us to construct an infeasible region in the state space ( , ) re-
gion for which the appropriate inputs for keeping the system on
the path are not available. Equation (23) is used as an analysis
tool only, verifying a posteriori that the calculated trajectories
are admissible. The next paragraph proposes a practical method
of resolution when the model is supposed to be perfect.
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C. Problem Resolution

According to the Pontryagin maximum principle, a time op-
timal solution exists in which the input switches exclusively be-
tween the maximum and minimum, possibly zero during a finite
interval (when the velocity is saturated). The terminal state re-
quirement is a function of the switching interval lengths. If we
suppose that the acceleration is constant during an interval, we
can use the approximation

(25)

For example, in the forward integration

(26)

The actual velocity depends on the past velocity, the path cur-
vature, the motor current, and the vehicle parameters. When the
equality of velocities [see (26)] that are computed with forward
and backward integration is obtained, it is considered to be the
switching time. Accelerations are obtained from (20). For each
, the path curvature and its derivative are known. The char-

acteristic of this motion-generation technique is that the curvi-
linear abscissa is the variable, while the time is a function
of . Other suboptimal methods can be used, such as polyno-
mial functions and sinusoidal curve to provide a higher degree
of continuity.

IV. ADAPTIVE CONTROL METHOD

Interest in adaptive control of nonlinear systems was stimu-
lated by major advances in the differential geometric theory of
nonlinear feedback control. A thorough treatment of this theory
was given by Kristic [10]. The control problem formulated here
consists of finding a control law to achieve tracking of a ref-
erence trajectory in task space with constant parametric uncer-
tainties of the vehicle. In fact, it is not easy to measure some
physical parameters such as aerodynamics parameters, param-
eters of the characteristic line describing the side-force values
in the longitudinal and lateral directions, and frictions and mo-
ment of inertia of the steering wheel around the center of gravity.
We rewrite the vehicle kinodynamics model combined with ac-
tuators dynamics such that the model is linear in the updated
parameters and suitable for the control. We start with the fol-
lowing system (27), which was obtained from (12) and (13).

(27)

where , , , and .
denotes the input in armature’voltages. Further, , ,

and are functions of the dc motor parameters [1]
, , and . The (2 2)

constant inertia matrix is as

(28)

and the vector

(29)

The uncertainty constant dynamic parameters are regrouped
in the following (7 1) vector:

(30)

We are interested in the unknown vehicle parameters (aerody-
namic parameters and tire–road contact parameters). Parameters
related to the dc motors can be obtained offline. The vehicle pa-
rameters should be written linearly in the model in order to use
the adaptive control procedure. To show the dependence in the
constant parameters, we write the dynamics of the vehicle as

(31)

which takes the compact form

(32)

The form of is

(33)

denotes the error in torques, which can be viewed
as a perturbation to the dynamic of the vehicle.
is a suitable desired torque that will be specified in the following.
Note that by using (27), is generated by the dynamic of the
actuators

(34)

The aim of the control is to specify , which should guarantee
, as (time). Of course, from (27) we

can take as input, but the internal dynamics due to actuators
will be ignored. For an automatically guided mechanism, this
hypothesis will be inherent to the displacement stabilities. In-
ternal dynamics produce an error that should be rejected before
tackling the stabilization-tracking problem. Therefore, our case
for guided vehicle control in road following takes into account
the actuators dynamic. Then, the voltage is taken as a control
vector.

In the following, let us define the tracking error by ,
where , is a specified curvilinear abscissa, and

is the desired steering angle. , is the estimation
of . We introduce with .
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Lemma 1: The open-loop system dynamics represented by
the state is

(35)

Proof: First, we consider that the parameters of the guided
vehicle are constant. Then, we can take . To prove the
second line of (35) as and let

, then with is given by (31). As
we can see, the input of is , which will be specified in the
following. Now, the fourth line in (35) is that given by (34) with

. is an appropriate adaptive law that
should ensure the vehicle stabilities even if the knowledge of
parameters is not perfect.

Lemma 2: Under the following control laws in torques:

(36)

and in voltages

(37)
with , , , the
dynamics of the system in the closed loop is given by

(38)

where is obtained from (33) as

(39)

and .
Proof: Note that the origin ( , , , )

is an equilibrium of (38).
The dynamic, as function of the estimated parameters, is con-

sidered in

(40)

Now, the dynamic in the closed loop of is the subject of the
substitution of by in (35), which leads to

(41)

Then, the state in the closed loop is verified.

Now, the input in voltages can be substituted to obtain the
dynamic of the error in torques , which leads to

(42)

In the following, we need to compute the term in (42). From
(32) and (36), we have

(43)

Then, clearly, we get

(44)

Substituting (44) into (42), it is straightforward to verify that
where , which is an ex-

ponentially stable dynamic. Our stability results are formulated
in the following theorem.

Theorem 1: The parametric model of the dc-actuated longi-
tudinal–lateral automatically guided vehicle given by (32) and
(34) is

(45)

having as inputs and , given by (36) and (37), respectively,
and the update law for

(46)

is asymptotically stable. Then, as . .
Moreover, and as .

Proof: The candidate such as the Lyapunov function is

(47)

Note that depends only on , so its time derivative is
equal to zero. Therefore, the time derivative of is given by

(48)

which takes this form

(49)

(50)

Some simplifications permit us to write

(51)

which is negative definite, meaning that the origin ( ,
, , and ) is an asymptotically stable equilibrium

point ( as ).

V. SIMULATION RESULTS

Many simulations were performed with a vehicle whose char-
acteristics are [7] kg, kgm , m,
and m.

Both motors are identical: , ,
Nm/A, , , , and

ms kmh .
The reference trajectory is calculated using the approach pre-

sented in Section III. We suppose that we have no knowledge
of the aerodynamic parameters and the front and rear road–tire
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Fig. 4. Straight-line path following for the AGV.

contact parameters. The length of the path is 10 m. Three cases
are presented, as follows:

• straight line, the curvature (Fig. 4);
• arc of the circle, the curvature (Fig. 5);
• clothoid, the curvature (Fig. 6).

The guided vehicle control block diagram is shown by Fig. 7,
while details about the model state variables are given in

Table II. The simulations are performed using MATLAB
software and the initial conditions are , ,

, and .

The performance of the tracking controller with the update
control law is subject to following a straight line and an arc of
circle curvatures. In this case, the parameters of the regulator
are chosen as , , ,
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Fig. 5. Circular path following for the AGV.

, and . is the (2 2) identity matrix.
However, to follow a clothoid path, we adjust the following gain
parameters of the controller: and .

In each figure, 12 schemes appear, as follows:

• path ( versus ), the eleven left are all versus the time;
• position errors ( ; );
• reference and real vehicle velocities on the path ( , );
• reference and real vehicle accelerations on the path ( , );
• reference and real jerks ( , );

• voltage of the motors ;
• variation of the angle of the direction ( , );
• reference and real angular velocities ( , );
• longitudinal reference torque
• lateral reference torque ;
• variation of the three estimated parameters ( , , and

);
• derivative of these three estimated parameters ( , , and

).
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Fig. 6. Clothoid path following for the AGV.

For the three cases of the road curvature, we obtain the fol-
lowing results for the estimated seven parameters. The values
given in brackets (see Table I) follow the variation of the gain
controller, which is in order to ensure the tracking performance
of the clothoid path. When we have taken the gain controller
identical for all these curvatures, only varies. As results, the
aerodynamic coefficients and the rear road–tire contact param-
eters seem to be constant versus the curvature of the road, while
the front road–tire contact parameter is greatly dependent on the

curvature of the road. As we can see, the parameter , which de-
notes the aerodynamic parameters, is important in the absolute
value for the clothoid path. This parameter depends on the form
of the path. More suitable investigation should be made while
introducing the real tests on the vehicle. The input in voltages
remains limited to 100 V, which guarantees the physical limi-
tations of the actuators. The performance of the proposed adap-
tive controller is demonstrated where we show that the tracking
errors and converge to zero for a finite value of
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Fig. 7. Guided vehicle control block diagram.

TABLE I
VEHICLE ESTIMATED PARAMETERS

TABLE II
AGV’S MODEL STATE VARIABLES

time. The effectiveness of the controller, as well as of the up-
date law, are illustrated on the other results of simulation. The
proposed adaptive control law ensures the control of the vehicle
even if the knowledge of its parameters is not perfect. This is

very useful insofar as certain parameters can be added with the
law of adaptation. The procedure of adaptation should be more
investigated for the characteristic curve of the tires, which are
time-varying parameters.
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VI. CONCLUSION

The first part of this paper has presented a vehicle dynamic
model that is suitable for path planning and control studies.
The second part proposed a method for generating smooth op-
timal motion for AGV on a given path when kinematics and
dynamics constraints are taken into account. In specifying such
a trajectory, the physical limits, such as velocity, current, and
slew rate limits, were considered. In the third part of this paper,
we have used an adaptive Lyapunov approach to propose a con-
troller. Simulation processes lead to constant aerodynamic co-
efficients and rear road–tire contact parameters versus the cur-
vature of the road. While the front road–tire contact parameter
is greatly dependent on the curvature of the road. Although dc
motors have been considered, other actuators such as alternating
current (ac) machines present the same kind of constraints on
both the current and voltage. Interesting applications of Hamil-
tonian methods, such as the energy-momentum method (for de-
termining nonlinear stability) and bifurcation of Hamiltonian
systems with symmetry (for uncovering non trivial branches of
new solutions when system parameters such as friction coef-
ficients are varied) are also a new perspectives. Other studies
should be conducted about deformability or flexibility of the
wheels, uneven roads, etc.
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