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Abstract  : After being neglected during many decades, airships are experiencing a new
interest, specially the stratospheric lighter than air vehicle. This paper presents a
nonlinear motion control method of a dirigible in a high constant altitude flight, for path
tracking.  We use the property that the system is input/output linearizable. In path
generation, we use the cubic spiral while the  polynomial approach is preferred in
motion generation. Then, some simulation results are presented. Copyright ©2001 IFAC
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1. INTRODUCTION

Development of  stratospheric Lighter Than Air
(LTA) platforms is attracting great attention in many
countries, for novel informational systems
applications (Onda, 1999). Some other possible
missions are presented in (Campos and Souza Colho,
1999; Elfes, Siquera Bueno and Bergerman, 1999).
An unmanned LTA platform can be maneuvered on a
guided path or held geostationary in the stratosphere
(20km). It is an easily modifiable, sub-orbital
platform. Missions span many fields and include
scientific and commercial applications (Onda, 1999) :
- high-resolution, real time remote sensing,
- environmental monitoring, 
-  telecommunications relays.
Compared to satellites, the airship platform in the
lower stratosphere has the advantages of being closer
to the  ground for better resolution images and
requires less power for radio wave relay. Since a
stratospheric LTA platform has to be light and large
in its displacement volume, a non rigid structured
hull would be most adequate. Winds in the
stratosphere are weak at the altitude around 20 km
above the ground, where the atmospheric pressure is
about 40 hPa. The average temperature at this
altitude is –50°C. Air density at this altitude is about
1/20 of that at sea-level and the LTA envelope needs
to be large enough to yield necessary buoyancy. This
kind of airship is a super-light weight membrane
structure. They are assumed super-pressurized,
buoyant helium is expected to remain above
atmospheric pressure inside the envelope,
independent of variations in the environment of the

airship. Neither the volume nor the mass changes
during a flight, assuming that no ballast is dropped. 
One of the basic problem is the control of this
stratospheric airship. Some analysis were made in
(Cook, Lipscombe and Goineau, 2000; Paiva, Bueno,
gomes, Ramos and Bergerman, 1999), dependent on
assumptions made from linear models for each
studied airship (moving in troposphere).  The linear
models were obtained from non linear simulation
models by linearising about a number of chosen trim
speeds representative of a typical speed envelope.
The decoupled linear models comprised the
longitudinal and lateral motions of the neutrally
buoyant airship, for speeds from the hover (0-0.1m/s)
to 30m/s. In this paper, we propose a non linear
approach : Input / Output linearization. Each input
must go through four integrators to go to the output.
Then we present some simulation results for path
tracking, and finally some concluding remarks. 

2. MODELLING

2.1 Dynamic model 

In (Bestaoui and Hamel, 2000) we have presented a
dynamic model taking into account the six degrees of
freedom, using the Newton-Euler approach, to
determine the position and orientation of the aerial
vehicle. Buoyancy has also some effects  presented in
(Turner, 1973). A high constant altitude flight occurs
in a horizontal plane. To simulate the horizontal
trajectory of dirigibles, we assume that the difference

mailto:Bestaoui@iup.univ-evry.fr
mailto:hima@iup.univ-evry.fr


between the horizontal velocity components of the
wind and the horizontal velocity components of the
airship is identically zero. Dirigible is a platform
where the correct control input to be issued is at the
level of forces and torques. They are propelled by
thrust, and are under-actuated systems. An under-
actuated mechanical system is one that does not have
all of its degrees of freedom independently actuated.
We model the dirigible as a neutrally buoyant rigid
body in an ideal fluid. When we consider the
simplified case where the dirigible just move in 2D
plane, then the system dynamics in an inertial frame
are (Sastry, 1999; Zhang and Ostrowski, 1999) :
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where xl and yl are acting lengths and tk is a rotor

dependant constant. 1F  and 2F are actuating forces
of the motors.
Neglecting the air resistance and all kind of damping
and friction, and assuming than the added mass
coefficients are identical in the x and y directions, we
can write :
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This an underactuated system, non-holonomic in the
acceleration. The non integrable condition arising in
terms of acceleration, is called the second order non
holonomic condition.

2.2 Properties of the dynamic model.

The aim of this paragraph is to study some properties
of the model (2), such as controllability.

State-space formulation

If the state-space variable is respectively defined as 
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Controllability.

Controllability indicates the existence of a path that
connects an initial configuration to the desired final
configuration, given a non holonomic sytem. There
are many possible approaches to finding conditions
for local controllability leading to different results
and requiring different hypotheses. For analytic
affine systems, the entire information about local
properties of the system such as local controllability
is contained in the values of the iterated Lie brackets
of the vector fields f0, f1, f2 . Moreover, these values
are easily computable. Therefore it is a natural
approach to look for conditions for local
controllability in terms of the elements of the Lie
Algebra generated by the vector fields f0, f1, f2.  
In the sequel, the control characteristic indices iσ ,
equal to the least order of the time derivative of the
output Y which is directly affected by some input,
are introduced.
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Proposition 1: A system represented by the
equation (4) is locally controllable and the non-
holonomy order is r =4, while the growth vector is
(2,4,6).(The relative growth vector is (2,2,2)).
The Control characteristic indices associated with
system (4) are given as follows:
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The proof of Proposition 1 can be found in the
Appendix .

As ∑ === ,4 niσσ there exists no zero
dynamics. In this case, the controllability indices are
equal to the control characteristic indices. The system
is of minimum phase. 

3. TRAJECTORY GENERATION.

For trajectory generation, we must find answers to
two questions. The first one is : Given a controllable
non holonomic system, how does one construct a
path that connects an initial configuration to the
desired final configuration ? The second question
being : How can we generate the motion on this
given  path ? For both questions, we have used
knowledge acquired in terrestrial mobile robots and
manipulators.

3.1. Path generation
.
An understanding of the characteristic of trajectories
of constant altitude, stratospheric platforms is
important because safety planning is influenced by
trajectories. An autonomous dirigible has the obvious
advantage of freedom in motion. If smooth paths are
used, path tracking tasks become easier and faster
navigation is possible. We use in the sequel a well
known path in mobile robotics : the spiral cubic with
continuous and differentiable curvature.  The
curvature is defined as :

01
2

2)( bsbsbsK ++= ( 8)

where s represents the curvilinear abscissa and

012 ,, bbb are polynomial coefficients depending on
the boundary conditions.
The second part of this section presents a method for
generating smooth motion for vehicles on a given
path.

3.2. Motion generation

Designing reference trajectories is essentially an
optimization problem. In specifying a trajectory, the
physical limits of the system must be considered. 
 The minimum time trajectory generation can be
solved in a number of ways, following the usual
approach, i.e. taking as feasible limits purely
kinematics constraints on vehicle velocity and
acceleration. 
We use the classical fifth polynomial interpolation
for motion generation :
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where L represents the length of the path and tf the
total final time. 
With kinematics considerations such as the maximal
velocity of the airship vmax or its maximal
acceleration amax, we have :
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This approach should be generalized to constraints on
the actuators and the propulsors. 



4.  CONTROL DESIGN

The next step is to control the motion of the vehicle 
onto the path. For kinematics models, the
stabilization problem has essentially been solved
with two types of control laws:
• time-varying piecewise continuous control.
• Time-varying continuous control.
An analogous study must be made for dynamics
models.
If we are given a desired state trajectory, we would
like to construct a controller which stabilizes the
system to this trajectory. The system given by (1) is
not input – state linearizable. However, this system
having a well defined relative degree can be
Input/Output linearizable. The key of this method is
to transform the non linear system into a linear one
by applying a state feedback and state
transformation.

Proposition 2 : If the control U is chosen such that 
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Then the system (2) can be equivalently written as 

V
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Where V is the new input.
If the decoupling matrix E(X) is non singular then the
system is locally decouplable and Input Output
linearizable by state feedback
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The output to be controlled is the output of a chain of
cascaded integrators fed by a nonlinear but invertible
forcing term.

In the case of our airship, 21 =r  , 22 =r  and
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where E is a singular matrix. To skip this problem ,
we can continue differentiating the outputs four times
to appear all inputs but in this case the determinant of
the decoupling matrix depend on the force 1u , this

causes a serious problem when 01 =u . We can
avoid this drawback  by choosing the point of interest
different from the gravitational center of airship. 
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be the coordinate of this point Xp. 
In this case we have:
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applying the same calculus we can obtain: 21 =r
and  22 =r  with
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and lxE =))(det(
The linearized model system does not contain an
unobservable zero dynamics. Thus, using a stable
tracking law, we can make the point Xp  tracking the
reference trajectory.

5. SIMULATION RESULTS

In this section, we illustrate the results of the
simulation in two parts, the first part is devoted to
present the reference trajectory generation using the
spiral cubic technique. we give the general case, non
parallel non symmetric initial and final
configurations. We have chosen :
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The distances (first three coordinates) are expressed
in meters and the angles (last three coordinates :
Euler representation) in degrees.
For the first part, path planning, to solve the problem
of searching the optimal intermediate posture, a
genetic algorithm is implemented.  
In the second part we apply our control design based
on the input-output linearization to allow the system



tracking of  reference trajectory. The airship is an
under actuated system, the number of its inputs  is
less than the number of its outputs, we must select a
number of outputs to be controlled equal to those of
its inputs. We used the MATLAB command "ode23"
and 0.005s as a step of simulation to simulate the
control system.
Figure 1 presents the geometrical trajectories for an
airship moving at constant altitude, while figures 2
and 3 show respectively the errors in the x and y
directions, differences between the reference and
measured trajectories. Figure 4 shows the airship
gemetrical postures. We can see that the point Xp
track the reference trajectory, but the airship turns
around this point, we cannot control the orientation.
This situation should be avoided in the future control
algorithms. 

6. DISCUSSIONS AND FUTURE WORK

This paper has presented an example of a dynamic
model suitable for path planning and control studies,
under the assumptions of ideal conditions. The non-
holonomic state space model is formulated where the
control inputs are those produced by the system’s
actuators. Some properties of the affine system are
studied. 
Our next objective is to determine the class of local
motions that can be exhibited by the airship. We are
currently studying motion planning based on Lie
vectors. Motion in these directions are possible by
appropriate choice of both controls U. 
All of the above analyses are based on the
assumption that the airship is neutrally buoyant.
However, airships are commonly operated heavy and
develop a small fraction of their total lift from ‘body’
incidence. This general case requires a 3D analysis of
the trajectories and the design of an ad-hoc control
method.
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Appendix A : Proof of Proposition 1.

For this particular class of affine non-holonomic
system, to check the controllability, we have to

consider the following Lie brackets.
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Thus the non-holonomy order is 4 while the growth
vector is (2, 4, 0, 6) and the relative growth vector is
(2,2,0,2).
It has been checked the Lie algebra spans the entire
space (R6). We can thus deduce that the system is
locally controllable.
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Appendix B : Proof of Proposition 2.

Input-output linearization of the system is obtained
by differentiating the outputs iy until the inputs
appear. So, the system become :
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Fig 1

Fig 2

0 20 40 60 80 100 120
0

20

40

60

80

100

120

y

x

Geometrical trajectories

reference trajectory
real trajectory     

0 5 10 15 20 25 30 35 40 45 50
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Geometrical error (Ex= Xd-X)

t(s)

E
x

0 5 10 15 20 25 30 35 40 45 50
-0.03

-0.02

-0.01

0

0.01

0.02

0.03
Geometrical error  Ey=(Yd-Y)

t(s)

E
y



Fig 3



Fig 4

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120

Airship Geometrical postures

x(t)

y(t
)


	Yasmina Bestaoui, Salim Hima
	Laboratoire des Systèmes Complexes, CEMIF, Université d’Evry
	bestaoui@iup.univ-evry.fr    hima@iup.univ-evry.fr

	Abstract  : After being neglected during many decades, airsh

	2.2 Properties of the dynamic model.
	State-space formulation
	3. TRAJECTORY GENERATION.
	6. DISCUSSIONS AND FUTURE WORK
	REFERENCES



