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Abstract : The objective of this paper is to generate
a desired flight path to be followed by an
autonomous airship. The space is supposed without
obstacles. As there is six degrees of freedom and
only three inputs for the LSC airship in a low
velocity flight, three equality constraints appear due

to the under-actuation. When the roll @ and pitch

6 angles as well as the longitudinal velocity u are
imposed, the first constraint gives a differential
equation on the yaw angle {/, the second equality
gives a differential equation on the lateral velocity
v and the third one an equation on the vertical
velocity w.

Index terms Autonomous airship, trajectory
generation, under-actuation.

I - INTRODUCTION

A Dbasic problem that has to be solved by
autonomous vehicles is the problem of trajectory
generation. Trajectory generation means the
generation and execution of a plan for moving from
one location to another location in space to
accomplish a desired task. The motion generation
module generates a nominal state space trajectory
and a nominal control input. Trajectory prediction
consists in computing reference values to be given
to the controller.

In the first part of the paper [BHO1], the trajectories
considered are trim trajectories. The general
condition for trim requires that the rate of change of
the magnitude of the velocity vector is identically
zero, in the body fixed frame. The trim problem is
generally formulated as a set of non-linear algebraic
equations. The solution trajectories are helices with
constant curvature and torsion. The most general
trim condition resembles a spin mode. The spin axis
is always directed vertically in the trim. In the
second part, variable curvature helices are
investigated. In [A04], a 3™ order expansion is used
for transition maneuvering between 2 helices.
[DMCO3] investigate optimal trajectory planning
for hot air balloons in linear wind fields. The
objective function to be minimized is fuel
consumption with respect to free end states.

This article is concerned with methods of
computing a trajectory in 6 degrees of freedom
space that describes the desired motion. The

contribution of this paper is the characterization of
trajectories, considering the under-actuation.

This paper consists of 6 sections. Section 2 presents
the kinematics while the following one introduces
the dynamics. Section 4 introduces the relationship
between trajectory generation and under-actuation.
Simulation results are discussed in Section 5 and
finally some concluding remarks are given in
section 6.

II - KINEMATICS

Consider a rigid body moving in free space.
Assume any inertial reference frame {F} fixed in
space and a frame {M} fixed to the body at the
center of gravity. At each instant, the configuration
(position and orientation) of the rigid body can be
described by a homogeneous transformation matrix
corresponding to the displacement from frame {F}
to frame {M}.

Figure 1

cg: center of gravity, cv: center of volume = cb: center of
buoyancy.
The origin C of {M} coincides with the center of

gravity of the vehicle. Its axes (X . Y. Z, )are

the principal axes of symmetry when available.
They must form a right-handed orthogonal normed
frame. The position of the vehicle C in {F} can be

described by 17, =(x y z)' While the
orientation is given by 77, = (¢ 0 l//)T with

¢ Roll, 6 pitch and y Yaw angles. The orientation
matrix R is given by:
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where ¢l = COS(@) and 50 = Sin(l9)

This description is valid in the region _% <o<”.

A singularity of this transformation exists for
T
0= By tkmkeZ-

The kinematics of the airship can be expressed in
the following way:
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o corresponds to the angular velocity of the rigid

body, while V' is the linear velocity of the origin
C of the frame {M}.

I - MECHANICAL SYSTEM

In this section, analytic expressions for the forces
and moments of a system with added mass and
inertia such as an airship are introduced [BHOO,
TO00, F96]. An airship is a lighter than air vehicle
using a lifting gas (helium in this particular case).
We will make in the sequel some simplifying
assumptions: the earth fixed frame is inertial, the
gravitational field is constant, the airship is well
inflated, the density of air is uniform. [ABL02]
consider the case of an airship with small
deformations analyzed via the Updated Lagrangian
Method. An airship is propelled by thrust.
Propellers are designed to exert thrust to drive the
airship forward. The most popular propulsion
system layout for pressurized non rigid airships is
twin ducted propellers mounted either side of the
envelope bottom. Another one exists in the tail for
torque correction and attitude control. In
aerostatics hovering (floating), its stability is
mainly affected by its center of lift in relation to the
center of gravity. The airship’s center of gravity can
be adjusted to obtain either stable, neutral or
unstable conditions. Putting all weight on the top
would create a highly unstable blimp with a
tendency to roll over in a stable position. In
aerodynamics flight, stability can be affected by
fins and the general layout of the envelope. Control

inertia can be affected by weight distribution,
dynamic (static) stability and control power
(leverage) available.

The translational part being separated from the
rotational part [BHO0O], the dynamic equations
(Euler — Poincaré) are given by :

MV =—w*MV —b()+ f(u) w2

Jo=-0*Jo-V*MV - B()+r(u)

where M and J are respectively the vehicle’s
mass and rotational tensors and t, B and f, b
represent respectively the control and non-
conservative torques and forces in body axes.

For a system with added masses, the term
V' * MV is non zero. We can propose

b(.) = R"e,(mg — B) +diag(D, ).V

B()=(R"e, * BG)B +diag(D,).c> €q3

m is the mass of the airship, the propellers and
actuators. M includes both the airship’s actual mass
matrix as well as the virtual mass elements
associated with the dynamics of buoyant vehicles. J
includes both the airship’s actual inertias as well as
the virtual inertia elements associated with the
dynamics of buoyant vehicles. As the airship
displays a very large volume, its added masses and
inertias become very significant [F96]. We will
assume that the added mass coefficients are
constant. They can be estimated from the inertia
ratios and the airship weight and dimension
parameters.

Diag(Dy) is the 3*3 aerodynamics forces diagonal
matrix. Diag(D,,) is the 3*3 aerodynamics moments
diagonal matrix.

e,=(0 0 1)
Be, : The 3*1 buoyancy force vector. B = pAg

a unit vector.

where Ais the volume of the envelope, p is the
difference between the density of the ambient
atmosphere p,;; and the density of the helium pyejjum
in the envelope, g is the constant gravity
acceleration.

B—Grepresents the position of the center of
buoyancy with respect to the body fixed frame. If
the center of gravity is below the center of

buoyancy, then BG = (O 0 z, )T

The aerodynamic force can be resolved into two
component forces, one parallel and the other
perpendicular to the direction of motion. Lift is the
component of the aerodynamic force perpendicular
to the direction of motion and drag is the
component opposite to the direction of motion. As



the airship is a slow moving object in the air, we
can assume a linear relationship between the speed
and the drag.

diag(D,) = diag(- X, -Y, -Z,)
diag(D,) = diag(— L, -M, - N,,)

The airship AS200 is an under-actuated system
with two types of control in a low velocity flight :
forces generated by thrusters and angular inputs
controlling the direction of the thrusters ( 7y is the tilt
angle of the propellers):

F =(T,siny 0 T, cosy)
F2:(0 T; O)T

where Ty and Tt represent respectively the main
T

and tail thrusters. 5G=(0 0 P°) AG=(P' 0 of
If we consider the plane XZ as a plane of
symmetry, the mass and inertia matrices can be
written as :

m+X, 0 X,
M = 0 m+7Y, 0
Z, 0 m+7Z,
I.+L, 0 -1
J=| 0 1, +M, 0
-1 0 I.+N,

It is important to gain insight into the geometric
structure of the equations since this knowledge can
be useful in areas such as motion planning and
control.

IV - TRAJECTORY GENERATION AND
UNDERACTUATION

In this paragraph, the three equality constraints
deriving from the under-actuation are sought.
Considering the dynamics of the airship and its

propulsion, the  following  under-actuation
constraints can be formulated. From

T, siny
f@)=MV+o*MV+b()=| T,

T, cosy cq 4

0
t(u)=J o+ w*Jo+V*MV + B()=| P’T, siny
P'T,

where the kinematics are :
p=¢-y S0
g=0Ch+y SPCo €q>

r=-08¢+yChCO

we obtain the three equality constraints.
First equality constraint : The roll moment being

zero, 7, =0 gives
Jl{é»'—z)) SO-y o C0)+

. . . . eq 6
(/5 - Jzz)(e Cop+y S¢C0)(— 0Sp+y c¢cej +
DP[¢— % SH) +2,BCASH=0

Second equality constraint Pl3 f, =1, gives

Jﬂ(éc¢—<’9¢s¢+z)}s¢c9+ y}ésc¢c9—y}és¢sej +
(Mll _M33)”W+(J11 _J33{¢_V./S9][_9S¢+V./C¢C9]+
Dq[é Cp+ y}s¢ce] ~2,BSO+P’'M,, u+ R3M22u{éc¢ + ./'/quca]

- PﬁMn{— 0Sp+y C¢C0] +P’Du+P(mg—B)SO=0
eq 7

Third equality constraint : le |, =1, gives

Jﬁ(— 0Sp—04Coh+ ())c¢c9—q}(}5s¢ce—y}éc¢sej
+(M22 _Mn)“er(Jzz —J11{¢—¢59][9C¢+¢S¢C0]
+ N,[— 054+ y}c¢c9} + P*M, v- PIZMHW{&— y}sej +

PfMl,u[— 0Sp+vy c¢c9} +P’D,v—P*(mg - B)S$CH=0

eq 8

The following approach is considered. The
variations of the roll and pitch angles as well as the
longitudinal velocity are imposed and the influence
of the under-actuation on the variations of the yaw
angle, the lateral and vertical velocities is studied.
The first equality constraint (eq. 6) is equivalent to
the resolution of an ordinary differential equation of
the form

a(t)l,ﬂb(t)(l,‘/jz eyt d)=0 a9

where



a(t)=JH(S9 B\ =PX,

2 . .
b(t) = (Jy; = T, (CSpC?0) ﬂvzz_prn(./, cgc¢_gs¢]
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eq 10 IB'SZ(MII_MZZ)
If E(t ) = l// (t ) then the non autonomous B=piPq e
generalized logistic equation must be solved : A=Lraf+op; °
B=B.a A=Paf, eq 15
- 75
a(t)=(t)+ b \=()) +c(t)=(e)+d(e)=0 _ B=ap,
B=psa+of; A=f
P4
eq 11 A=B:%
The third equality constraint (eq. 8) can be written
as: A Roll and Pitch angles constant

. The differential equation
wit)=a,+tou+a,v+auv+a,v eql2

2
where ay+ b(y/j +cy+d=0 eq 16
. 2 . . . . . .
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a, = . . + a:—J“(SH) b:(J33_J22)(S¢C9)(C¢C0)
—PIZMZZ(V/ S@—¢j c=D,(-50) d =-z,BCHS$
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The second equality constraint (eq. 7) gives :
2 2 :
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By using the method of separation of variables and
where integration by partial fractions, in the constant
Bo= J (l// COS¢+éC¢+y}¢C6C¢—y}éS6{S¢—é;}5S¢] coefficient case, logistic equation can be solved
‘ = and the behavior of all solutions is analyzed.

h
‘N
AN

+(J,, —JB)(—é¢s¢+y}q}c¢ce+y}ésas¢—y}z c¢cese]For P=0;y@t)=p,e

- . For 8 =0; Bz,
+Dq(y/C6{S'¢+9C¢j—BZI,59+P13(mg—3)59 ’l//(l):t Coll -1 TV,
z y



For the particular case, where l/ is constant,
classical trim trajectories are encountered. When

I/ is not constant, Figure 2 shows the solution

/8 (t ) of the differential equation (eq 12) while

Figure 3 shows its derivative (l‘ )

50004
40004
3000+
20004

10004

0 10 il an 0 a0
t

Figure 2

Even though there is a nonlinear variation of { in

the beginning of the simulation, the yaw angle has a

linear variation after a certain time .
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Figure 3

A transitional behavior can be recognized before
the yaw velocity attains a permanent (constant)
value.

B Roll and Pitch angles linear functions of time
In this paragraph, the roll and pitch angles are
assumed to have linear variations:

0=00t+06, p=0¢,t+¢,

When the coefficients of the non autonomous
logistic equation are no longer constant, no explicit
solutions can be found in general and the
equilibrium point may become unstable [G93]. For
a study to be complete, the existence of stable
periodic or stable bounded solutions is an essential
part of qualitative theory of this differential
equation, in order to determine non trivial solutions
and study their behavior [GP03, G93, JWZ02,
NO0O]. Nkashama[NOO] proved that the logistic
equation with positive non autonomous bounded
coefficients has exactly one bounded solutions that
is positive and does not tend to the zero solution.

Solving the first equality constraint (eq. 6), the roll
moment being null, Vt, implies

L, g,=0=¢,=0.

Rearranging the first equality constraint with this

requirement gives : 6o CH,S@, =0, three cases
are possible

9020 or id

$, =0 or ¢0:5

If the roll angle is zero, the following differential
equations must be solved :

—u(1,.50)+ y}(— L,80+6,COI, -1, -1, )j =0

eq 18
or W+ y}(mbéo cmsej:o
a :Lp /(Ir) b:_(lz _Iy _12)/(175)
eq 19

the following derivative (t ) is obtained

ag

- 0, 560,"50™"e eq 20
yle)=-
- cosh[%} + sinh[%}
o 6o

T
The case @, = E gives the following differential

equations
w+ q}(al +a,00CO/ S@j +a,CO/S0=0

a="L 1) a,=(1.~1,+1)/1,) e4*
a,=Bz, /1,

The third equality constraint (eq. 8) gives

w:é'l+é'2uv+53u+é'4v+§5it eq 22
[+ -1, NCO LyCo
=6, - -
| le M, PZISGM}. le l// S@My
M, -M,
62 :*'.7'
Py SoM,
coMm, Y
2T sem ==
v y/SHMy
1
65 = T
v SO

Once the yaw angle is calculated, the linear and
angular velocities are determined as well as the 3D
path, using the kinematics.



V- SIMULATION RESULTS

The lighter than air platform is the AS200 by
Airspeed Airships. It is a remotely piloted airship
designed for remote sensing. It is a non rigid 6m

long, 1.4m diameter and 8.6 m’ volume airship
equipped with two vectorable engines on the sides
of the gondola and 4 control surfaces at the stern.
The four stabilisers are externally braced on the
full and rudder movement is provided by direct
linkage to the servos. Envelope pressure is
maintained by air fed from the propellers into the
two ballonets located inside the central portion of
the hull. These ballonets are self regulating and
can be fed from either engine. The engines are
standard model aircraft type units. The propellers
can be rotated through 120 degrees. During flight
the ruddervators (Rudder and elevator) are used
for all movements in pitch and yaw.

In this paragraph, three cases are presented for a
normalized simulation time = 1.

1_¢0=7r/12 6,=7/6 ¢,=0 fig. 4
6o =0.1 u=1 u=0

2_¢0=7Z'/12 90=7Z/6¢0=0.1 ﬁgs
0o =0 u=1 u=0

3. bh=rl12  G,=1/6 ¢, =01 fig. 6
0o =0.1 u=1 u=0.1

For each case, four subplots are presented : the first
one presents the trajectory in space, the second one
the variation of the yaw angle /, the linear

velocities v and w and finally the angular velocities
p,q, 1.

This 3D trajectory (figure 4) represents a part of a
helix with constant curvature and torsion. The yaw
angle has a linear variation while the angular and
linear velocities are constant.
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After a transient phenomenon, the yaw angle has a
linear variation and the path tends to a classical
helix with constant curvature and torsion.
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In this simulation, the angular and linear velocities
have a slight nonlinear variation. After a certain
time, they tend to have permanent values.
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When the derivative of the longitudinal velocity is
non zero, the nonlinear phenomenon is amplified.

VI - CONCLUSIONS

This paper addresses the problem of characterizing
continuous paths on the group of rigid body
motions in 3D, taking into account the under-
actuation. Three differential algebraic equations
must be solved as there is six degrees of freedom
and three inputs. The constraints on the yaw angle
is in the form of a generalized logistic equation
while the others are differential algebraic equations
in v and w, when the variations of the longitudinal
velocity u, and the pitch and roll angles@,¢@ are

imposed. The role of the trajectory generator is to
generate a feasible time trajectory for the UAV.
Once the path has been calculated in the Earth fixed
frame, motion must be investigated and reference



trajectories  determined taking into account
actuators constraints. This is the subject of our
actual research. This method can be suitable for
precise flight path tracking tasks, such as in landing
approach. As a further application of the trajectory
determination, the prediction of a cone of feasible
future positions can be determined to evaluate the
influence of the different kinematic parameters on
the future flight path.

This methodology can be applied to other types of
UAV, taking into account their characteristics. For
fixed wing aircraft or helicopter, the added mass
and inertia are neglected.
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