
Figure 1: A 4-finger viewpoint manipulation

A Screen-Space Formulation for 2D
and 3D Direct Manipulation

 Jason L. Reisman Philip L. Davidson Jefferson Y. Han
Perceptive Pixel, Inc.

{ jason, philipd } @ perceptivepixel.com

ABSTRACT
Rotate-Scale-Translate (RST) interactions have become the
de facto standard when interacting with two-dimensional
(2D) contexts in single-touch and multi-touch environments.
Because the use of RST has thus far focused almost entirely
on 2D, there are not yet standard techniques for extending
these principles into three dimensions. In this paper we
describe a screen-space method which fully captures the
semantics of the traditional 2D RST multi-touch interaction,
but also allows us to extend these same principles into three-
dimensional (3D) interaction. Just like RST allows users to
directly manipulate 2D contexts with two or more points,
our method allows the user to directly manipulate 3D objects
with three or more points. We show some novel interactions,
which take perspective into account and are thus not available
in orthographic environments. Furthermore, we identify
key ambiguities and unexpected behaviors that arise when
performing direct manipulation in 3D and offer solutions to
mitigate the difficulties each presents. Finally, we show how
to extend our method to meet application-specific control
objectives, as well as show our method working in some
example environments.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Interaction Styles.

General terms: Design, Algorithms, Human Factors
Experimentation

Keywords: Direct Manipulation, Multi-touch,
Pressure, Optimization, Constraints

1 INTRODUCTION
The appeal of direct manipulation with multi-touch
interfaces stems from the experience it offers. As the user
slides their fingers along a touch surface, objects react by

rotating, translating, and scaling themselves so that the same
point on an object always remains underneath the same
fingertip. Since objects move in a predictable and realistic
fashion, users are given the impression of “gripping” real
objects. Direct manipulation essentially provides an intuitive
and controllable mapping between points in an object’s local
space and points in screen space, without the need for any
explicit gesture processing.

As evidence of the appeal of direct manipulation, Rotate-
Scale-Translate (RST) interaction has become the de facto
standard when interacting with 2D contexts in a multi-
touch environment. However due to the fact that RST-
style interaction has thus far been almost entirely in 2D,
it isn’t entirely clear how to extend these principles into
three dimensions. While many ways exist to manipulate
3D objects in a multi-touch environment, as far as we know
none of them provide direct control. This is in contrast to
what many users have come to expect when manipulating
2D objects such as photos, maps, documents, etc..

In this paper we describe a screen-space approach which
attempts to resolve this limitation. Our method completely
captures the 2D semantics of RST, while additionally
allowing us to extend these same principles into three
dimensions. We show that our method offers fine-grained
control for any number of contact points and highlight some
novel bimanual interactions that 3D direct manipulation
enables. Furthermore, we discuss the issues which emerge
when using a screen-space 3D direct manipulator, and offer
solutions to help mitigate their effects. We believe these
issues to be sufficiently general that they should occur in
any screen-space direct manipulator which operates in 3D,
regardless of whether one uses our particular formulation or
another. Finally, we discuss how to extend our method by a
combination of penalties and weights, and demonstrate that
3D direct manipulation is useful for a variety of tasks.

2 RELATED WORK
There exists a rich history of exploring 3D motion with
2D input devices. Chen et al [2] evaluate 3D rotation
tasks, and find that continuous 2D rotation controllers such
as 2DOF angular manipulators and ‘Virtual Trackballs’
improve rotation task performance over standard slider

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’09, October 4–7, 2009, Victoria, British Columbia, Canada.
Copyright 2009 ACM 978-1-60558-745-5/09/10...$10.00.

69

implementations. Neilson et al. [9] demonstrate a range of
tools for direct manipulation of three-dimensional translation,
scaling, and rotation tasks using 2D input devices. These
tools use graphical cues to dynamically select between a
range of 1 and 2DOF control domains.

Most current touch manipulators in 3D restrict the user to
indirect manipulation, rather than letting the user “touch”
and affect the object directly. Perhaps most prominent
among these is the Arcball rotational controller [11] which
uses the product of quaternions to rotate an object about its
center, thus allowing viewing from any direction. While
Arcball does provide an intuitive rotational control, it
does not allow the user to completely set the object’s new
position, as the center of rotation is fixed. Several bimanual
techniques for indirect 3D manipulation were also explored
on the responsive workbench in [3].

Common touch controls for higher order 3D manipulation
factor the full 6 degrees-of-freedom (DOF) interaction
into separate lower-order direct and indirect manipulation
components - for example, composing the standard Arcball
rotation control with well-known 4DOF planar interaction
techniques [7]. Such control techniques are most intuitive
when the motion of the contact point has a direct (0th or 1st
order) mapping to the screen-space motion of a controlled
point on the object (Arcball can be modified to achieve
direct point manipulation). When this is not the case, it may
be necessary to render graphical feedback in the form of
control handles, rotation axes, or ‘racks’ [12], to indicate
the expected effect of control point motion on the object’s
apparent motion. Graphical feedback is also effective when
the full 3D motion of the object is artificially constrained.

In multi-point interaction, it is important to provide
consistent (re)assignment of contact points to control DOF
as contact points are added or removed from the interaction.
This is generally achieved via priority, relative location, or
through system-provided identification of contact points,
as shown in [7]. The assignment paradigm is critical to
composing multi-finger interaction gestures, especially
when considering that the user should not experience any
unexpected changes in the control mapping for each finger.
Grossman demonstrated a bimanual assignment model
(using a motion tracking system) for separable control of
rotation and translation using full hand tracking on a 3D
volumetric display [6] .

The drawback in separation and assignment of control in
6DOF manipulation is that our experience of real-world
manipulation is a more holistic process - the regions grasped
on an object remain in contact with the fingers and hand as
the hand is moved to a position that satisfies those positional
constraints. This continuous contact explains the ease
with which users interact with 4DOF two-point interaction
modes, as the manipulation satisfies direct point-to-point
correspondence throughout the interaction.

Gleicher et al. in [5] noted the linear relationship between
screen-space derivatives and transform derivatives, and used

this to implement a screen-space direct manipulator. While
Gleicher focuses on solving for camera motion, the system
may be formulated with respect to object manipulation.
As points move in screen-space, a linear system is solved
to provide the corresponding movement in transform
parameters. This enables a powerful direct manipulation
mechanism, and is easily extended to handle a wide range
of constraints. In our experience though, when used for
real-time interactive applications, the forward integration
of camera parameter derivatives may result in camera
oscillations.

Some peculiarities of controlling camera motion via
screen-space control points are addressed by Kyung et al.
[8]. The authors note that in order to meet constraints the
path taken by the camera’s parameters may include rapid
changes resulting in unpredictable camera motions. To
handle this gracefully they smooth out the camera’s motion
by interpolating the camera parameters from immediately
before and immediately after the regions of rapid change.

A variant of the numerical approach is to use a physics
engine, and impart forces or constraints to objects in the
scene so that they respond to control point manipulation in
a direct fashion. In “physical user interfaces” interactive
components are embodied as solid elements in the simulation
environment. BumpTop [1] allows objects to be moved and
collected via spring forces. Fröhlich et al [4] demonstrated
6DOF bimanual manipulation via spring forces on the
Responsive Workbench. Recently, Wilson et al. in [13]
tried two approaches, one which creates a solid element as a
proxy in the scene, and another approach where the objects
are manipulated by a stream of fluid particles.

While the underlying physical simulation can provide a
number of convincing side effects during the interaction
(inertia, collision), the complications of the approach lie in
representing interactive forces in a manner that is consistent
with both the capabilities of stable physical simulation and
to user expectation, especially when the user operates the
system in a strongly non-physical manner.

3 MACHINERY
Our method is very much in the spirit of Through The
Lens Camera Control [5]. Recalling our definition of direct
manipulation as a controllable mapping between points in
the object’s local-space and points in screen-space, each
contact point defines a constraint which ensures the screen-
space projection of the object-space point “touched” always
remains underneath the user’s fingertip. This amounts to
continually updating the transformation which maps points
in the object’s local-space to points in screen-space such that
the multiple constraints are best met.

3.1 Energy
We define the function s(x,q) to be the function which maps
object-space point x into screen-space point p as

s(,) h(())= =p x q PM q x
in which P is the projection matrix, M is a matrix

70

parameterized by the vector q which maps x into world-
space, and h is the viewport transformation. M is most likely
the product of several matrices which are parameterized by
the transform values (e.g., rotation, scaling, translation, etc.)
and P is a constant matrix which describes the camera’s field
of view as well as how an object’s image size changes with
distance to the camera. Note that this means an object point’s
corresponding image point can only be altered by the local to
world-space transformation, as we are not manipulating any
of the camera’s DOF.

We solve for the best-fit transform parameters by minimizing
a quadratic energy function that measures the total squared
error between the contact points’ screen-space projection
and their corresponding screen-space target positions. If xi
and pi are the position of the ith object-space contact point
and screen-space target points, respectively, then our energy
is defined as

E = s(xi ,q) − pi
i
∑

2

and we look for solutions which minimize E w.r.t. q.

Our use of an unconstrained energy quadratic in screen-
space error ensures us that the interface will continue to be
responsive regardless of how many fingers a user places on
the touch-screen. Note that minimizations which involve
a large number of contact points may come at the expense
of some slippage - i.e., deviation from screen-space target
positions. As is usually the case when measuring error
in L2, the slippage will tend to be spread out as evenly as
possible among the contact points. Alternative schemes for
distributing the error will be discussed in Section 6.

3.2 World Space Transformation
So far we have made no mention regarding the type of
transformation we wish to employ to map object-space
point x into world-space. The choice of transformation,
and particularly its DOF, is crucial to ensure the desired
interaction. Since we are interested in extending familiar
RST interactions from 2D into 3D, a transformation which
inherently captures this style of interaction seems like a
valid place to begin. That is, our transformation M(q)
should contain the product of rotation (R), scaling (S), and
translation (T) matrices. Since we are operating in 3D, we
must also consider how the DOF which parameterize these
matrices interact with the projection matrix (P).

Depending on our choice of P, from the user’s point of view
some of these DOF may be ambiguous. For example, if P
is chosen to be a perspective transformation, scaling the
object up will be similar in effect to translating the object
so it becomes closer to the camera. However, if P is chosen
to be an orthographic projection, then translating toward or
away from the camera will have no effect, leaving scaling
as the sole DOF capable of changing the object’s screen-
space extent. For these reasons all seven transform DOF (3
for rotation, 3 for translation, and 1 for scaling) may not be
required or even useful at all times.

For the manipulators described in this paper, we assume
that we are working with a perspective camera and thus an
object’s screen-space extent is affected by both translation
and scaling. Since these DOF are redundant from the user’s
point of view, we make the assumption that our local-to-
world-space transform’s set of DOF will include translation
along the camera’s Z axis, but not scaling. Then, similar
to the quaternion camera model described in [5], we can
define our transform parameters q and local to world-space
transform M(q) as

q = tx ty tz qx qy qz[]
M(q) = T(tx,ty,tz)Q(qx,qy,qz)

in which T is the usual translation matrix and Q is a unit-
quaternion matrix in which qw = 1− qx2 − qy2 − qz2 . Note that
this leaves us with a total of 6 DOF, a number which is
especially important with regard to the solution method we
chose to employ.

3.3 Minimization Method
A variety of methods may be used to minimize our nonlinear
energy, including stepping through the transform parameter
space in a manner similar to [5]. However, we achieved
the best performance when treating the minimization as a
nonlinear least-squares problem. By using a Levenberg-
Marquardt algorithm [10], the minimization can be
completed in a fraction of a millisecond on a 3 GHz Intel
CPU. This allows for smooth, low-cost interactions on
commodity hardware.

The only restriction Levenberg-Marquardt places on our
problem is that we have at least as many terms in our energy
as DOF. Each contact point adds two terms to our energy
(error in screen x, screen y), so for one and two-point
interactions this may mean locking down some DOF to
the transform’s current values. However, this can be made
entirely consistent with standard RST-style interactions for
one and two-point interactions. For minimizations involving
three or more contact points, all of the transform’s DOF can
be employed.

4 INITIAL EXPERIENCES
We first verified our method by recreating a 4DOF RST
manipulator. Adhering to the usual RST convention, we
allowed only translation along camera X and Y when used
with a single contact point, while the second contact added
full 3D translation and Z axis rotation. When controlling
2D planar objects (embedded in 3D), we could not discern
any difference between our manipulator and other 2D RST
controllers.

Our initial 6DOF manipulator straightforwardly extended
RST’s mapping between the number of contact points and
active DOF. The one and two-finger interactions remained the
same as with the 4DOF manipulator, while the third contact
enabled the remaining two DOF (rotation about the camera’s
X and Y axes). An immediate observation was that when we
made motions with 3 or more fingers which were analogous
to the familiar translation and scaling motions of 2-finger

71

4DOF control, the object moved in the expected manner
(as if it were still under control of a 4DOF manipulator).
However, what was not immediately clear were the motions
expected of the user for controlling the two newly enabled
DOF. Rotation into and out of the screen seemed to require
more intricate motion of the fingers, and thus we proceeded
with experimentation to learn how to effectively control all
six DOF with this particular manipulator.

4.1 Three Finger Rotations
After a few minutes of use we learned to rotate objects freely
in 3D by using three-finger, two-handed motions. (These
motions were also possible with a single hand, but we felt
they were much more comfortable when done bimanually.)
A common approach was to pin the object down with two
fingers of the non-dominant hand, while using a single finger
from the dominant hand to swing the object either into or
out of the screen. With this gesture, shown in Figure 2 (top
row), we could define an axis by connecting the two contacts
of the non-dominant hand, and then easily rotate the object
about that axis.

Rotating in this manner worked particularly well when the
contact points were at nonuniform depths relative to the
camera. Under these conditions, the orientation of the model
combined with the resulting foreshortening provided us with
enough spatial cues to easily control the object’s motion.
The path the dominant hand’s finger needed to take in order
to rotate the object about the axis was clear, and the object
rotated either into or out of the screen as intended.

We also quickly observed that we were not limited to only
rotating the object about the axis defined by the non-dominant
hand. If we moved the dominant finger in a manner which did
not coincide with rotating about this axis, the object turned
to follow the direction of the dominant finger. While this
turning did not permit the same range of motion as rotating
about the axis, the interaction still felt fluid and natural. We
called this overall type of operation a swivel interaction. An
example is depicted in Figure 2 (bottom row).

When the contacts were all close to the same depth, however,
the initial direction of rotation became more difficult to
control. This was immediately apparent on planar objects
whose initial orientations faced the camera. An example of
this can be seen by looking ahead to Figure 5. As shown, the
object sometimes rotated out of the screen when we intended
it to rotate into the screen (or vice-versa). We could still

achieve the desired rotation, but this required swivelling
the object slightly out of the image plane in the manner
described in the previous paragraph. Once this out-of-plane
rotation occurred, we fell back on the usual spatial cues in
order to guide the object into the desired orientation.

Rotating an object using contacts which were initially at
different depths into positions in which all the contacts
were at roughly equal depths also produced some surprising
results. As shown in Figure 6, when the contacts were rotated
to near equal depths, the motion rapidly changed to rotation
about a different axis coupled with translation of the object
towards the camera. After some thought this behavior made
sense; since matching the contacts using the original rotation
became impossible, the continued motion is a 3D variant of
the scaling caused by moving points apart in 2D. Regardless,
we still found this surprising and undesirable. We expected
that a smooth, consistent motion of the fingertips would
cause an equally smooth and consistent motion of the object.
However, as noted in [8], this property is not guaranteed to
be satisfied by Through The Lens techniques. We discuss
methods to address both this rotational issue as well as the
one described the previous paragraph in the next section.

Further experimentation also revealed that large rotations
sometimes required multiple gestures to complete. For
example, when using three fingers to rotate an object by
180 degrees or more, the contact point in motion necessarily
became occluded as the object swung around. Our method
still supported manipulating the occluded contact point (as
it still mapped to a valid screen-space location), and despite
not being visible the contact wasn’t difficult to control.
However, as it is impossible for one hand to pass through
another, we had to remove and replace one or more of the
contacts to complete the desired rotation. This limitation is
not shared by [11,7], which support full 360 degree rotation
with a single motion.

4.2 Emergent Interactions
Upon further use, we observed instances in which a small
amount of finger motion could produce rotations of up to 180
degrees. These interactions were not immediately apparent,
but rather became evident through use, and once discovered
were easy to repeat. As far as we know, the following
interactions cannot be supported by other manipulators.

For example, we learned to place two fingers from the
dominant hand on the object and one from the other in a
triangular configuration. We then rotated the dominant
hand so that the three points became nearly collinear. As
this happened the object rotated such that all three contacts
were on a plane oriented 90 degrees away from the camera.
(Whether the object rotated into or out of the screen

Figure 3: A three-finger shear rotate

Figure 2: Two three-finger rotations

72

depended on its initial orientation plus whether we rotated
the manipulating hand clockwise or counterclockwise.)
As shown in Figure 3, the rotation was accompanied by
a twisting and scaling of the object, the image of which
resembled a shearing operation. For this reason, we called
this type of interaction a shear rotation.

We also found that new viewpoints could be achieved by
exploiting foreshortening. As shown in Figure 4, this type
of operation involved first placing four contact points on
the object in a configuration that mimics the foreshortening
at the initial viewpoint. The object could then easily be
maneuvered into a new viewpoint by moving the fingers
to positions which describe the foreshortening at the target
view. This interaction could be used to flip an object almost
180 degrees by changing its viewpoint from one oblique
perspective from to another. However, because of the arm
and wrist motion required, this gesture felt most comfortable
when used to rotate an object by 90 degrees or less. For an
example of this working on a terrain navigation system, see
Figure 1.

5 ROTATIONAL EXTREMA
As noted in the previous section, rotations including axes
other than the camera’s Z axis can produce some surprising
results. Upon closer examination we found that these are
caused by rotational extrema - i.e., points in the transform
space at which screen-space distances are maximized
with respect to rotational DOF. As our initial experiences
informed us, these situations arise frequently during normal
use. In this section we explore two major classes of rotational
extrema problems and offer ways to identify and curb their
influence.

5.1 Ambiguous Rotations
These situations occur when the axis of rotation is correct,
but the object rotates in the opposite direction from what was
expected. As described in section 4.1, this usually occurs
when one contact point is brought closer to the axis defined
by the other two stationary contacts. If all three contact
points are at roughly equal depths, the axis of rotation will
lie in the camera’s X-Y plane, and the screen-space distance
between the contacts is at a maximum with respect to the
angle of rotation about the axis. Regardless of whether the
object rotates clockwise or counterclockwise about this axis,
the points will be brought closer together in screen-space.
Figure 5 demonstrates such a situation, in which the contact
points will be matched either by rotating the object away
from (5.ii) or towards (5.iii) the user.

Without any intervention, it is entirely up to how the
solver chooses descent directions to decide between the
two possibilities. However, by influencing the solver into

favoring one solution over the other, we can mitigate the
effects of this type of ambiguity.

5.1.1 Biasing The Solver to Resolve Ambiguities
To mitigate rotational ambiguities with a gradient-based
solver, one can simply bias the solver by choosing a
starting point that favors one direction over the other. A
small perturbation from a maxima is all that is required for
many descent-based algorithms to start descending down a
particular path in the solution space. In our case this means
selecting the axis which we would like to rotate counter-
clockwise about, and using a small displacement in this
direction as our starting point for rotational update DOF
(e.g., quaternion values qx, qy, and qz.)

For example, in the situation presented in Figure 5, we can
bias the solver into selecting the solution which rotates the
cube towards the user by initializing qy to a small negative
value (such as -10-1) instead of zero. The solver will then start
by considering solutions which include a clockwise rotation
about Y. As a more complicated example, and one which
takes the user interaction into account, we may wish to bias
the solver according to the following rules: moving left on
the screen most likely indicates a negative rotation about the
Y-axis; moving to the right is a positive rotation. Similarly,
moving upwards and downwards indicates a negative and
positive rotation about the X-axis, respectively. (This
particular choice of biases corresponds roughly to the types
of rotations that can be done with an Arcball controller.) We
can then bias the update to X and/or Y rotational updates by
perturbing qx and/or qy such that descending the gradient
from that point will cause the solution to contain the rotation
we desire.

Note that the perturbation shouldn’t have any adverse behavior
away from local maxima. In this case the perturbation will
either push the DOF towards the local minima or away
from it. If the initial position is perturbed towards the local
minima then the algorithm will converge as normal. If the
perturbation is away from the local minima, then because
we are away from a local maxima, and assuming that the
perturbation is sufficiently small, we will also converge to
the same solution. In this case the solver should descend
the gradient from the perturbed point past the original pre-
perturbed point, and wind up at the same local minima.

5.1.2 Using Pressure to Resolve Ambiguities
We also experimented with using pressure to correct
rotational ambiguities. Pressure provides users with an extra
half-dimension (i.e., a non-negative value) which can be
used in addition to the usual 2D motion along the surface
of a touch-screen. We thus wished to give users a tool to

Figure 5: Illustration of an ambiguous rotation

(i) (ii) (iii)

 Figure 4: A four-finger perspective rotate

73

“push” a contact point further into the screen. Rotational
ambiguities can then be resolved by pushing one side of the
object into the screen when beginning a rotation.

One way pushing can be accomplished is by adding a penalty
to our energy which tries to influence the solver into moving
the point in the desired direction in world-space. The desired
depth, ztarget, can be determined from the current pressure
value and the object’s current world-space depth. We can
then measure the contact point’s deviation from the target
depth via the quadratic penalty

λ(ztarget − < z, M(q)x >)2

in which x is the point to be pushed, z is the unit-length vector
pointing into the screen, and λ is a weighting coefficient
used to correct the difference in dimensionality between the
world-space penalty and the screen-space energy. λ can be
viewed as a trade-off factor of how much slippage among the
contact points we are willing to accept for the point to pushed
into the screen. For a more in depth discussion of penalties
and a suitable choice of value for λ, please see section 7.

5.2 Rotational Exhaustion
Rotation about an axis can also increase the screen-space
distance between a pair of contact points as they are moved
apart by the user. However, this distance will eventually be
maximized with respect to that axis. Referring to Figure 6,
as point B is dragged to the right, a rotation about camera Y
will increase the length of vector AB until its screen-space
length is maximized (6.iii) with respect to that rotation.
However, it is still possible for three contact points to be
matched exactly, although the apparent DOF used to perform
the matching will necessarily have to change.

Most commonly this means engaging a translation in Z (6.iv)
which brings the object closer to the camera. However, as
the object translates forward, the constraints on points A
and C induce a new rotation roughly about AB, which is
perceptually perpendicular to the previous axis of rotation.
We wish to detect the point at which this rapid transition
happens, and take some appropriate course of action to either
control or correct the shift in interaction behavior.

5.2.1 Waxing and Waning Interactions
We can gain some insight into the problem by fitting a
plane to the contact points and examining the path the

plane’s normal takes during a typical interaction exhibiting
rotational exhaustion. Figure 6 (bottom) also depicts the path
of the normal in the interaction shown. The normal initially
starts rotating to become more and more parallel with the
eye vector, and then takes a sharp turn and quickly becomes
less and less parallel. The sharp bend in the normal’s path
characterizes a rotational exhaustion as the axis of rotation
quickly changes from the initial axis to another. Note that
in general the new axis is not necessarily perpendicular to
the original, and the normal does not always become exactly
parallel to the eye vector. Rotational exhaustion can occur
from any starting orientation, rotating about any axis, not
only those axes which lie in the X-Y plane. Regardless of
object orientation though, all rotational exhaustions exhibit
this type of bend in their normal path.

We refer to this phenomena as a waxing/waning interaction.
When the plane’s normal is becoming more and more
parallel with the look vector, we say the plane is waxing.
Similarly, when the plane’s normal is becoming more and
more orthogonal to the look vector, we say the plane is
waning. It can be observed that the rapid shift in rotational
axis occurs at the transition point from waxing to waning.
That is, when the plane’s normal is maximally parallel to the
eye vector, and then starts turning away. Again, this does not
necessarily mean that the two vectors are actually parallel,
but rather that given the constraints set by the contact points,
they won’t get any more parallel then they are at this point.

To detect when this occurs, we define w(x,q) to be the a
function which measures the angle point x’s normal makes
with the eye vector at x given transform parameters q, and
look for minima in this function with respect to time. We
evaluate this function at the centroid of the contact points
using the normal of the best-fit plane. Assuming the world-
space eye vector at the centroid can be computed from the
transform values, and that we have the plane’s normal in
local-space, this gives us

w(xcentroid ,q) = 1− < eyecentroid , M(q)n plane >

Minima in w are simply an indication that the plane’s
orientation has shifted from waxing to waning, but are not
sufficient as an indicator of rotational exhaustion. In Figure
7, point B is moved in a small orbit, moving first to the right
(7.ii), and induces a minima in w (7.iii, bottom) as point
B starts to return toward points A and C. Such changes in

(i)

A

B

C

Figure 6: Illustration of an interaction exhibiting rotational exhaustion, and the path of the best-fit plane’s normal

(ii)(i) (iii) (iv) (v)

A

B

A

B

A

B

A

B

A
B

C C C

C

C

74

Figure 7: Illustration of a waxing/waning interaction which is not a rotational exhaustion

(i) (ii) (iii) (iv) (v)

A

B

C

A

B
C

A
B

C

A B

C

A

B

C

B

orientation can be expected when a control point reverses or
otherwise modifies its current trajectory. The key difference
in the case of rotational exhaustion (as shown in Fig. 6) is
that the shift in orientation (and detected minima) occur as B
is moved along a relatively consistent trajectory. Thus, we
impose the additional criterion that each constraint point’s
trajectory should not deviate too much from a straight line.

Finally, it may be desirable to require that the change in
w from a point’s initial position to its current position be
greater than some minimum threshold. This essentially
requires that the surface point must have rotated by more
than this minimum amount, and should help protect against
false positives. Depending on the application, this may
be important because if a minima in w is detected but the
total change of w is small, then this likely indicates that the
interaction started near a minima and thus may not qualify as
a true rotational exhaustion.

5.2.2 Interaction Correction
Once detected, we experimented with “correcting” the
interaction by limiting which DOF the minimization is
allowed to operate upon. It would seem natural that since
the interaction happens by exhausting rotational DOF that
simply constraining all rotational DOF to their current values
should be sufficient to correct the problem. Of course, when
this is employed, the object stops rotating before unexpected
behavior occurs. However, without any rotational DOF, no
further changes to the object’s orientation can be made. This
is in stark contrast the types of manipulations which were
possible immediately before the correction began.

For this reason we further experimented with restricting
translational DOF instead of rotational ones. Since
translation along camera Z is engaged once the original
rotational component is exhausted, and this translation must
work hand-in-hand with the new rotation in order for the
contact points to be matched, restricting translation along
camera Z seemed to be a viable alternative. We felt that
this results in a more natural feel than restricting rotation,
as the object can still move in subtle ways and many of the
same manipulations are still possible regardless of whether
translation along Z is enabled or not.

Finally, we must consider when to re-allow the solver to
operate in all six DOF again. Ideally this should happen
when the screen-space target points return close to their pre-

slippage positions, as this is the most natural location for the
user to “unwind” to. Fortunately we already have a means
by which to measure the total slippage among contact points:
our energy. If energy is increasing, it means that slippage is
among the contact points is increasing as well. On the other
hand, if energy is decreasing then the contact points must be
moving closer towards the points on the object which were
originally touched. We can therefore select a reasonable
threshold that the energy must fall beneath at which point
the missing DOF are activated again.

6 ERROR DISTRIBUTION
Whenever our camera is overconstrained, such as in the
presence of greater than three contact points, when we add
additional terms to our energy, or limit the available DOF
as described in the previous section, we must necessarily
incur some error. In fact, just removing a single DOF (e.g.,
translation along Z) will result in slippage among three or
more contact points. Because our energy measures error in
L2, the error will tend to be distributed as evenly as possible
among the contact points. As shown in Figure 8 (i), this
results in none of the contacts matching their target positions
exactly. While this may be sufficient for some applications,
it is entirely possible that this is not desirable behavior for
others.

By adding a normalized weighting coefficient to each
contact point’s terms in our energy, the distribution of error
among the contact points can be controlled. This additional
coefficient simply declares how “important” a particular
point is relative to the other points, and thus the degree to
which it will be matched during the optimization. If ωi is
the weight of the ith contact, then with weighting coefficients
included our energy becomes

E = ω i s(xi ,q) − pi
i
∑

2

ω i = 1
i
∑

The question of how to properly choose a weighting criteria
still remains. The answer to this of course is application-

(ii) (iii)(i)

Figure 8: Three contact-point weighting schemes

75

specific. However, in order to avoid assigning importance
to the contact points in advance, we believe two general
guidelines should be that the weights themselves can be
derived from some measurable property of the interaction,
as well as can easily be adjusted throughout. With these
guidelines in mind, we experimented with four weighting
criteria to control error distribution when the available DOF
are limited by applying the rotational exhaustion “correction”
described in section 5.2.2.

The first two schemes made use of the screen-space distance
a contact has travelled from its initial position to define
weights. Screen-space distances seemed well-suited for this
purpose as a contact point’s motion may be viewed as an
indication of the user’s intent. If a contact point moves quite
a bit while the others remain relatively fixed, then the point
in motion may be considered more important than the others,
and thus should be matched more closely. If weighting is
defined in this manner, then when translation along camera
Z is disabled, the object will translate to follow the dominant
hand’s fingers across the screen while the non-dominant
hand’s contacts exert little influence on the object’s motion.
Thus, this weighting scheme effectively falls back on the
single-finger translation one would expect from a 4DOF
RST controller. This can be seen illustrated in Figure 8 (ii).

An alternative interpretation of using distance to define
weights is to consider the stationary points more important
than the ones in motion. In this case, the contacts of the
non-dominant hand, which were used to create the rotational
axis, pin the object down while the dominant hand’s contacts
are free to roam around the screen. An example of this is
shown in Figure 8 (iii). As a result, the points in motion can
exert only a small rotational influence on the pinned object,
and thus this weighting scheme maintains the object’s
position and orientation at the time the correction is applied
and translation along Z is disabled.

We also explored the use of pressure to control the spread of
error. By defining a contact’s weight in terms of how hard
a user is pressing against the screen, we give the user a tool
with which to pin points down. The harder a user presses at
a contact relative to how they press at other contact points,
the harder the solver will try to match that point. Because
pressure values are continuous and easily adjusted, it is easy
to dynamically re-weight contact points on the fly.

One difficulty with using pressure values to control error
distribution arises from the fact that fingers are not styluses,
and should not be expected to function in the same manner.
When pressing a finger hard against a touch-screen and
moving at the same time, friction may cause the interaction
to be unpleasant and thus undesirable. This naturally makes
pressure more well-suited for making stationary contact
points sticky rather than trying to more heavily weight points
in motion.

7 PENALTIES
Depending on the application, one may wish to constrain
the object’s motion to meet task-specific ends. Our method

supports such constraints via quadratic penalties. Each
penalty function simply measures deviation from some ideal
condition. For example, in an application which allows a
globe to be spun, one may wish to enforce the condition
that the globe’s center always remains constant in world-
space. A penalty representing this would simply measure
the distance from the globe’s original center and sufficiently
increase the energy if movement from this position should
occur. With penalties included, the most general form of our
energy can be written as

E = ω i s(xi ,q) − pi
i
∑

2
+ λ j g j (q)2

j
∑

in which gj(q) is the jth penalty function with weight
coefficient λj.

Penalties are not true, hard constraints in the strictest
sense. However, through a careful choice of penalty terms
one can often achieve the same result. Since each contact
point adds exactly two terms to our energy, one and two-
point manipulations will contain fewer terms than the six
available DOF. Sophisticated one and two-point interactions
can thus be created by using penalty terms to constrain the
remaining DOF without sacrificing the exactness of the
solution. Ideally the total number of terms in our energy
should be close or equal to the number of DOF. While our
method doesn’t enforce a limit on the number of terms, the
presence of large numbers of penalty terms will likely cause
the interaction to noticeably degrade.

7.1 Weighting Penalties
When our energy is overconstrained (i.e., when the number
terms in our energy exceed the number of available DOF),
properly weighting the penalty functions may be required to
ensure that each penalty continues to function sufficiently
as a constraint. Choosing a value for λ to weight a screen-
space penalty essentially informs the solver of the trade-off
one is willing to accept between violating the penalty and
the amount of the slippage one will allow the contact points
to incur. The weight chosen indicates that a violation of one
pixel is equivalent to λ pixels of slippage of an unweighted
contact point, and if λ is large enough the solver should work
harder to ensure that the penalty only receives an equivalently
small amount of the error. Because our energy is quadratic
in contact point slippage, in practice weighting screen-space
penalties in the range of 10 to 104 seems to keep the penalty
violations small and slippage to a minimum.

Choosing a value for λ for world-space penalties can be more
challenging. Due to the difference in dimensionality, small
violations of penalties in world-space are potentially much
more disastrous than small violations of penalties in screen-
space. A violation of one-pixel in screen-space may be barely
noticeable to a user, but a violation of the same magnitude
in world-space will likely be glaring. If is therefore crucial
to weight the penalty so such gross violations cannot
occur during the minimization. If an application can only
tolerate a violation of 10-k in world-space before violations
become noticeable, one must set λ to be at least 102k. This
is equivalent to the max tolerable violation in world-space

76

being about one pixel of error in screen-space. Furthermore,
in order for the penalty to carry even more significance than
slippage among the contact points during the optimization,
λ must be sufficiently increased beyond the lower bound of
102k. In practice a value of λ in the range of 102k+1 to 102k+4
seems to work well.

Finally, assuming the penalty is not violated at the start
of the interaction, it is important not to set λ too large and
overweight the penalty. If a penalty is overweighted, then
any movement at all will result in penalty values which dwarf
error associated with contact point slippage. As a result, the
object will simply stop responding to input.

7.2 Penalties In Action
We experimented with a wide array of screen-space and
world-space penalties. The following set seemed to be of the
most value: vector fixed in world-space, point fixed in world-
space, distance between two points fixed in world-space,
point constrained to plane in world-space, direction between
points fixed in screen-space, distance between points fixed
in screen-space. Since our method presumes the presence
of functions which project from local-space into both world-
space and screen-space, each of these penalties can be easily
implemented via dot products and distance computations in
the appropriate space.

Once we had these penalties implemented, we were able to
create rich interactions with just a few lines of code in our
example implementation. For example, Figure 9 depicts a
two-point interaction in which a penalty has been added to
only allow rotation about the first contact point’s normal.
This single penalty enables two-point rotation about arbitrary
3D axes.

Multiple penalties can be used in tandem to produce more
interesting interactions then a single penalty would allow
alone. For instance, penalizing a point’s deviation from
a plane alone won’t stop the rest of object from orienting
itself in some arbitrary manner with respect to the plane. By

additionally penalizing the rotation of the point’s normal
and tangent vectors, the object is forced to slide along
the plane without any twisting. Figure 10 shows a single
point interaction in which a cube is constrained to move in
the plane perpendicular to the contact point’s normal and
twisting is disallowed.

7.3 Navigation Tasks
If the object under control is much larger than the camera’s
field of view, then our method can also be applied to
navigation tasks. Since the model responds to input in a
very RST-like manner, users can leverage preexisting multi-
touch experiences to perform new multi-touch tasks, such
as traversal through virtual environments. Figure 11 shows
a user performing RST-like interactions to navigate into a
complicated model.

For objects which are not free-floating, the addition of some
simple penalties may be required to ensure the desired
interaction. For example, by constraining the center of a
globe to always remain at the same location in world-space,
our method can readily be applied to globe navigation. For
single-point interactions, we can make the globe rotate
underneath the user’s fingertip by penalizing changes in the
distance between the camera and the center of the globe.
Since the user can then spin the globe with a single finger
without affecting the camera’s distance to the globe, the
presence of these two penalties effectively allow our method
to mimic an Arcball controller. The interaction still behaves
correctly at arbitrary camera orientations, such as the one
shown in Figure 12 (top row).

For terrain navigation interactions involving two or more
contact points, the distance penalty is dropped. The user

Figure 10: Translation along a plane without twisting

Figure 9: Rotation constrained about a particular axis

Figure 11: Traversing through a large model

Figure 12: Single (top row) and two-point (bottom row) interactions on a terrain navigation system

77

can zoom in and out with two fingers, and tilt the globe or
change perspective with three or more fingers. Because our
controller operates in screen-space, our method even permits
novel terrain interactions, such as pinning one point on the
surface down to a particular location on screen, and then
spinning the earth around it. Figure 12 (bottom row) depicts
this type of interaction, in which the user has pinned down
a mountain and spins the world around it. Notice that the
position of the mountain does not change on screen.

8 CONCLUSION AND FUTURE WORK
In this paper we have presented a screen-space method
which allows direct control in 2D and 3D on a multi-touch
surface. We suspect that the issues we have explored when
working via direct manipulation in 3D are sufficiently
general and apply not just to our particular formulation,
but to any screen-space 3D direct manipulator. Despite
these difficulties, which we believe are mitigable, there
very likely exist many interesting applications for 3D direct
manipulators.

There is still much left to do. We would like to continue
expanding our understanding of the unexpected phenomena
which popped up when directly manipulating in 3D.
This includes exploring ways to make the interactions as
predictable as possible, with as little intervention as possible.
We would also like to expand the capabilities of our method.
The addition of penalties specified by metrics such as the
speed of the user’s fingers may be useful in guiding the
optimization into more faithfully capturing the user’s intent.
Additionally, methods to implement “undo” operations, by
backtracking through solution space should also be looked
into.

Finally, we would like to explore integration with
optimization algorithms which allow hard constraints. This
does not mean that we will discard our penalty framework.
Rather, hard constraints and penalties can work in tandem to
ensure desired interactions.

9 REFERENCES
1. Agarawala, A. and Balakrishnan, R. 2006. Keepin’ it real:

pushing the desktop metaphor with physics, piles and the pen.
In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Montréal, Québec, Canada, April
22 - 27, 2006). R. Grinter, T. Rodden, P. Aoki, E. Cutrell, R.
Jeffries, and G. Olson, Eds. CHI ‘06. ACM, New York, NY,
1283-1292.

2. Chen, M., Mountford, S. J., and Sellen, A. 1988. A study
in interactive 3-D rotation using 2-D control devices. In
Proceedings of the 15th Annual Conference on Computer
Graphics and interactive Techniques R. J. Beach, Ed.
SIGGRAPH ‘88. ACM, New York, NY, 121-129.

3 Cutler, L. D., Fröhlich, B., and Hanrahan, P. 1997. Two-
handed direct manipulation on the responsive workbench.
In Proceedings of the 1997 Symposium on interactive 3D
Graphics (Providence, Rhode Island, United States, April 27
- 30, 1997). SI3D ‘97. ACM, New York, NY, 107-114. DOI=
http://doi.acm.org/10.1145/253284.253315

4. Fröhlich, B., Tramberend, H., Beers, A., Agrawala, M., and
Baraff, D. 2000. Physically-Based Manipulation on the
Responsive Workbench. In Proceedings of the IEEE Virtual
Reality 2000 Conference (March 18 - 22, 2000). VR. IEEE
Computer Society, Washington, DC, 5.

5. Gleicher, M. and Witkin, A. 1992. Through-the-Lens Camera
Control. In Proceedings of the 19th Annual Conference on
Computer Graphics and Interactive Techniques J. J. Thomas,
Ed. SIGGRAPH ‘92. ACM, New York, NY, 331-340.

6. Grossman, T., Wigdor, D., and Balakrishnan, R. 2004. Multi-
finger gestural interaction with 3d volumetric displays. In
Proceedings of the 17th Annual ACM Symposium on User
interface Software and Technology (Santa Fe, NM, USA,
October 24 - 27, 2004). UIST ‘04. ACM, New York, NY, 61-
70. DOI= http://doi.acm.org/10.1145/1029632.1029644

7. Hancock, M., Carpendale, S., and Cockburn, A. 2007.
Shallow-depth 3d interaction: design and evaluation of one-
, two- and three-touch techniques. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(San Jose, California, USA, April 28 - May 03, 2007). CHI
‘07. ACM, New York, NY, 1147-1156.

8. Kyung, M., Kim, M., and Hong, S. J. 1996. A new approach
to through-the-lens camera control. Graph. Models Image
Process. 58, 3 (May. 1996), 262-285.

9. Nielson, G. M. and Olsen, D. R. 1987. Direct manipulation
techniques for 3D objects using 2D locator devices. In
Proceedings of the 1986 Workshop on interactive 3D Graphics
(Chapel Hill, North Carolina, United States). F. Crow and S.
M. Pizer, Eds. SI3D ‘86. ACM, New York, NY, 175-182

10. Nocedal, J. and Wright, M. 1999. Numerical Optimization.
Springer, New York

11. Shoemake, K. 1992. ARCBALL: a user interface for specifying
three-dimensional orientation using a mouse. In Proceedings
of the Conference on Graphics interface ‘92 (Vancouver,
British Columbia, Canada). K. S. Booth and A. Fournier, Eds.
Morgan Kaufmann Publishers, San Francisco, CA, 151-156.

12. Snibbe, S. S., Herndon, K. P., Robbins, D. C., Conner, D. B.,
and van Dam, A. 1992. Using deformations to explore 3D
widget design. In Proceedings of the 19th Annual Conference
on Computer Graphics and interactive Techniques J. J.
Thomas, Ed. SIGGRAPH ‘92. ACM, New York, NY, 351-352.

13. Wilson, A. D., Izadi, S., Hilliges, O., Garcia-Mendoza, A., and
Kirk, D. 2008. Bringing physics to the surface. In Proceedings
of the 21st Annual ACM Symposium on User interface Software
and Technology (Monterey, CA, USA, October 19 - 22, 2008).
UIST ‘08. ACM, New York, NY, 67-76

78

