
Figure 1:  A 4-finger viewpoint manipulation
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ABSTRACT
Rotate-Scale-Translate (RST) interactions have become the 
de facto standard when interacting with two-dimensional  
(2D) contexts in single-touch and multi-touch environments. 
Because the use of RST has thus far focused almost entirely 
on 2D, there are not yet standard techniques for extending 
these principles into three dimensions. In this paper we 
describe a screen-space method which fully captures the 
semantics of the traditional 2D RST multi-touch interaction, 
but also allows us to extend these same principles into three-
dimensional (3D) interaction. Just like RST allows users to 
directly manipulate 2D contexts with two or more points, 
our method allows the user to directly manipulate 3D objects 
with three or more points. We show some novel interactions, 
which take perspective into account and are thus not available 
in orthographic environments.  Furthermore, we identify 
key ambiguities and unexpected behaviors that arise when 
performing direct manipulation in 3D and offer solutions to 
mitigate the difficulties each presents. Finally, we show how 
to extend our method to meet application-specific control 
objectives, as well as show our method working in some 
example environments.

ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Interaction Styles.

General terms: Design, Algorithms, Human Factors 
Experimentation 
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1 INTRODUCTION
The appeal of direct manipulation with multi-touch 
interfaces stems from the experience it offers. As the user 
slides their fingers along a touch surface, objects react by 

rotating, translating, and scaling themselves so that the same 
point on an object always remains underneath the same 
fingertip. Since objects move in a predictable and realistic 
fashion, users are given the impression of “gripping” real 
objects. Direct manipulation essentially provides an intuitive 
and controllable mapping between points in an object’s local 
space and points in screen space, without the need for any 
explicit gesture processing.

As evidence of the appeal of direct manipulation, Rotate-
Scale-Translate (RST) interaction has become the de facto 
standard when interacting with 2D contexts in a multi-
touch environment.  However due to the fact that RST-
style interaction has thus far been almost entirely in 2D, 
it isn’t entirely clear how to extend these principles into 
three dimensions.  While many ways exist to manipulate 
3D objects in a multi-touch environment, as far as we know 
none of them provide direct control.  This is in contrast to 
what many users have come to expect when manipulating 
2D objects such as photos, maps, documents, etc..

In this paper we describe a screen-space approach which 
attempts to resolve this limitation.  Our method completely 
captures the 2D semantics of RST, while additionally 
allowing us to extend these same principles into three 
dimensions.  We show that our method offers fine-grained 
control for any number of contact points and highlight some 
novel bimanual interactions that 3D direct manipulation 
enables.  Furthermore, we discuss the issues which emerge 
when using a screen-space 3D direct manipulator, and offer 
solutions to help mitigate their effects.  We believe these 
issues to be sufficiently general that they should occur in 
any screen-space direct manipulator which operates in 3D, 
regardless of whether one uses our particular formulation or 
another.  Finally, we discuss how to extend our method by a 
combination of penalties and weights, and demonstrate that 
3D direct manipulation is useful for a variety of tasks.

2 RELATED WORK
There exists a rich history of exploring 3D motion with 
2D input devices.  Chen et al [2] evaluate 3D rotation 
tasks, and find that continuous 2D rotation controllers such 
as 2DOF angular manipulators and ‘Virtual Trackballs’ 
improve rotation task performance over standard slider 
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implementations.  Neilson et al. [9] demonstrate a range of 
tools for direct manipulation of three-dimensional translation, 
scaling, and rotation tasks using 2D input devices.  These 
tools use graphical cues to dynamically select between a 
range of 1 and 2DOF control domains.

Most current touch manipulators in 3D restrict the user to 
indirect manipulation, rather than letting the user “touch” 
and affect the object directly.  Perhaps most prominent 
among these is the Arcball rotational controller [11] which 
uses the product of quaternions to rotate an object about its 
center, thus allowing viewing from any direction.  While 
Arcball does provide an intuitive rotational control, it 
does not allow the user to completely set the object’s new 
position, as the center of rotation is fixed.  Several bimanual 
techniques for indirect 3D manipulation were also explored 
on the responsive workbench in [3].

Common touch controls for higher order 3D manipulation 
factor the full 6 degrees-of-freedom (DOF) interaction 
into separate lower-order direct and indirect manipulation 
components - for example, composing the standard Arcball 
rotation control with well-known 4DOF planar interaction 
techniques [7].  Such control techniques are most intuitive 
when the motion of the contact point has a direct (0th or 1st 
order) mapping to the screen-space motion of a controlled 
point on the object (Arcball can be modified to achieve 
direct point manipulation). When this is not the case, it may 
be necessary to render graphical feedback in the form of 
control handles, rotation axes, or ‘racks’ [12], to indicate 
the expected effect of control point motion on the object’s 
apparent motion.  Graphical feedback is also effective when 
the full 3D motion of the object is artificially constrained.  
 
In multi-point interaction, it is important to provide 
consistent (re)assignment of contact points to control DOF 
as contact points are added or removed from the interaction. 
This is generally achieved via priority, relative location, or 
through system-provided identification of contact points, 
as shown in [7].  The assignment paradigm is critical to 
composing multi-finger interaction gestures, especially 
when considering that the user should not experience any 
unexpected changes in the control mapping for each finger.  
Grossman demonstrated a bimanual assignment model 
(using a motion tracking system) for separable control of 
rotation and translation using full hand tracking on a 3D 
volumetric display [6] .

The drawback in separation and assignment of control in 
6DOF manipulation is that our experience of real-world 
manipulation is a more holistic process - the regions grasped 
on an object remain in contact with the fingers and hand as 
the hand is moved to a position that satisfies those positional 
constraints.  This continuous contact explains the ease 
with which users interact with 4DOF two-point interaction 
modes, as the manipulation satisfies direct point-to-point 
correspondence throughout the interaction.  

Gleicher et al. in [5] noted the linear relationship between 
screen-space derivatives and transform derivatives, and used 

this to implement a screen-space direct manipulator.  While 
Gleicher focuses on solving for camera motion, the system  
may be formulated with respect to object manipulation.  
As points move in screen-space, a linear system is solved 
to provide the corresponding movement in transform 
parameters.  This enables a powerful direct manipulation 
mechanism, and is easily extended to handle a wide range 
of constraints.  In our experience though, when used for 
real-time interactive applications, the forward integration 
of camera parameter derivatives may result in camera 
oscillations. 

Some peculiarities of controlling camera motion via 
screen-space control points are addressed by Kyung et al. 
[8].  The authors note that in order to meet constraints the 
path taken by the camera’s parameters may include rapid 
changes resulting in unpredictable camera motions.  To 
handle this gracefully they smooth out the camera’s motion 
by interpolating the camera parameters from immediately 
before and immediately after the regions of rapid change.

A variant of the numerical approach is to use a physics 
engine, and impart forces or constraints to objects in the 
scene so that they respond to control point manipulation in 
a direct fashion.  In “physical user interfaces” interactive 
components are embodied as solid elements in the simulation 
environment.  BumpTop [1] allows objects to be moved and 
collected via spring forces.   Fröhlich et al [4] demonstrated 
6DOF bimanual manipulation via spring forces on the 
Responsive Workbench.  Recently, Wilson et al. in [13] 
tried two approaches, one which creates a solid element as a 
proxy in the scene, and another approach where the objects 
are manipulated by a stream of fluid particles. 

While the underlying physical simulation can provide a 
number of convincing side effects during the interaction 
(inertia, collision), the complications of the approach lie in 
representing interactive forces in a manner that is consistent 
with both the capabilities of stable physical simulation and 
to user expectation, especially when the user operates the 
system in a strongly non-physical manner.  

3 MACHINERY
Our method is very much in the spirit of Through The 
Lens Camera Control [5]. Recalling our definition of direct 
manipulation as a controllable mapping between points in 
the object’s local-space and points in screen-space, each 
contact point defines a constraint which ensures the screen-
space projection of the object-space point “touched” always 
remains underneath the user’s fingertip. This amounts to 
continually updating the transformation which maps points 
in the object’s local-space to points in screen-space such that 
the multiple constraints are best met.

3.1 Energy
We define the function s(x,q) to be the function which maps 
object-space point x into screen-space point p as 

s( , ) h( ( ) )= =p x q PM q x
in which P is the projection matrix, M is a matrix 
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parameterized by the vector q which maps x into world-
space, and h is the viewport transformation.  M is most likely 
the product of several matrices which are parameterized by 
the transform values (e.g., rotation, scaling, translation, etc.) 
and P is a constant matrix which describes the camera’s field 
of view as well as how an object’s image size changes with 
distance to the camera.  Note that this means an object point’s 
corresponding image point can only be altered by the local to 
world-space transformation, as we are not manipulating any 
of the camera’s DOF.

We solve for the best-fit transform parameters by minimizing 
a quadratic energy function that measures the total squared 
error between the contact points’ screen-space projection 
and their corresponding screen-space target positions.  If xi 
and pi are the position of the ith object-space contact point 
and screen-space target points, respectively, then our energy 
is defined as 

E = s(xi ,q) − pi
i
∑

2

and we look for solutions which minimize E w.r.t. q.

Our use of an unconstrained energy quadratic in screen-
space error ensures us that the interface will continue to be 
responsive regardless of how many fingers a user places on 
the touch-screen.  Note that minimizations which involve 
a large number of contact points may come at the expense 
of some slippage - i.e., deviation from screen-space target 
positions.  As is usually the case when measuring error 
in L2, the slippage will tend to be spread out as evenly as 
possible among the contact points.  Alternative schemes for 
distributing the error will be discussed in Section 6.

3.2 World Space Transformation
So far we have made no mention regarding the type of 
transformation we wish to employ to map object-space 
point x into world-space. The choice of transformation, 
and particularly its DOF, is crucial to ensure the desired 
interaction. Since we are interested in extending familiar 
RST interactions from 2D into 3D, a transformation which 
inherently captures this style of interaction seems like a 
valid place to begin.  That is, our transformation M(q) 
should contain the product of rotation (R), scaling (S), and 
translation (T) matrices. Since we are operating in 3D, we 
must also consider how the DOF which parameterize these 
matrices interact with the projection matrix (P).

Depending on our choice of P, from the user’s point of view 
some of these DOF may be ambiguous. For example, if P 
is chosen to be a perspective transformation, scaling the 
object up will be similar in effect to translating the object 
so it becomes closer to the camera. However, if P is chosen 
to be an orthographic projection, then translating toward or 
away from the camera will have no effect, leaving scaling 
as the sole DOF capable of changing the object’s screen-
space extent. For these reasons all seven transform DOF (3 
for rotation, 3 for translation, and 1 for scaling) may not be 
required or even useful at all times.

For the manipulators described in this paper, we assume 
that we are working with a perspective camera and thus an 
object’s screen-space extent is affected by both translation 
and scaling. Since these DOF are redundant from the user’s 
point of view, we make the assumption that our local-to-
world-space transform’s set of DOF will include translation 
along the camera’s Z axis, but not scaling. Then, similar 
to the quaternion camera model described in [5], we can 
define our transform parameters q and local to world-space 
transform M(q) as

q = tx ty tz qx qy qz[ ]
M(q) = T(tx,ty,tz)Q(qx,qy,qz)

in which T is the usual translation matrix and Q is a unit-
quaternion matrix in which qw = 1− qx2 − qy2 − qz2 .  Note that 
this leaves us with a total of 6 DOF, a number which is 
especially important with regard to the solution method we 
chose to employ.

3.3 Minimization Method
A variety of methods may be used to minimize our nonlinear 
energy, including stepping through the transform parameter 
space in a manner similar to [5]. However, we achieved 
the best performance when treating the minimization as a 
nonlinear least-squares problem. By using a Levenberg-
Marquardt algorithm [10], the minimization can be 
completed in a fraction of a millisecond on a 3 GHz Intel 
CPU. This allows for smooth, low-cost interactions on 
commodity hardware.

The only restriction Levenberg-Marquardt places on our 
problem is that we have at least as many terms in our energy 
as DOF. Each contact point adds two terms to our energy 
(error in screen x, screen y), so for one and two-point 
interactions this may mean locking down some DOF to 
the transform’s current values. However, this can be made 
entirely consistent with standard RST-style interactions for 
one and two-point interactions. For minimizations involving 
three or more contact points, all of the transform’s DOF can 
be employed.

4 INITIAL EXPERIENCES
We first verified our method by recreating a 4DOF RST 
manipulator.  Adhering to the usual RST convention, we 
allowed only translation along camera X and Y when used 
with a single contact point, while the second contact added 
full 3D translation and Z axis rotation.  When controlling 
2D planar objects (embedded in 3D), we could not discern 
any difference between our manipulator and other 2D RST 
controllers.

Our initial 6DOF manipulator straightforwardly extended 
RST’s mapping between the number of contact points and 
active DOF.  The one and two-finger interactions remained the 
same as with the 4DOF manipulator, while the third contact 
enabled the remaining two DOF (rotation about the camera’s 
X and Y axes).  An immediate observation was that when we 
made motions with 3 or more fingers which were analogous 
to the familiar translation and scaling motions of 2-finger 

71



4DOF control, the object moved in the expected manner 
(as if it were still under control of a 4DOF manipulator).  
However, what was not immediately clear were the motions 
expected of the user for controlling the two newly enabled 
DOF.  Rotation into and out of the screen seemed to require 
more intricate motion of the fingers, and thus we proceeded 
with experimentation to learn how to effectively control all 
six DOF with this particular manipulator.

4.1 Three Finger Rotations
After a few minutes of use we learned to rotate objects freely 
in 3D by using three-finger, two-handed motions.  (These 
motions were also possible with a single hand, but we felt 
they were much more comfortable when done bimanually.)  
A common approach was to pin the object down with two 
fingers of the non-dominant hand, while using a single finger 
from the dominant hand to swing the object either into or 
out of the screen.  With this gesture, shown in Figure 2 (top 
row), we could define an axis by connecting the two contacts 
of the non-dominant hand, and then easily rotate the object 
about that axis.

Rotating in this manner worked particularly well when the 
contact points were at nonuniform depths relative to the 
camera.  Under these conditions, the orientation of the model 
combined with the resulting foreshortening provided us with 
enough spatial cues to easily control the object’s motion.  
The path the dominant hand’s finger needed to take in order 
to rotate the object about the axis was clear, and the object 
rotated either into or out of the screen as intended.
 
We also quickly observed that we were not limited to only 
rotating the object about the axis defined by the non-dominant 
hand.  If we moved the dominant finger in a manner which did 
not coincide with rotating about this axis, the object turned 
to follow the direction of the dominant finger.  While this 
turning did not permit the same range of motion as rotating 
about the axis, the interaction still felt fluid and natural.  We 
called this overall type of operation a swivel interaction.  An 
example is depicted in Figure 2 (bottom row).

When the contacts were all close to the same depth, however, 
the initial direction of rotation became more difficult to 
control.  This was immediately apparent on planar objects 
whose initial orientations faced the camera.  An example of 
this can be seen by looking ahead to Figure 5.  As shown, the 
object sometimes rotated out of the screen when we intended 
it to rotate into the screen (or vice-versa).  We could still 

achieve the desired rotation, but this required swivelling 
the object slightly out of the image plane in the manner 
described in the previous paragraph.  Once this out-of-plane 
rotation occurred, we fell back on the usual spatial cues in 
order to guide the object into the desired orientation.

Rotating an object using contacts which were initially at 
different depths into positions in which all the contacts 
were at roughly equal depths also produced some surprising 
results.  As shown in Figure 6, when the contacts were rotated 
to near equal depths, the motion rapidly changed to rotation 
about a different axis coupled with translation of the object 
towards the camera.  After some thought this behavior made 
sense; since matching the contacts using the original rotation 
became impossible, the continued motion is a 3D variant of 
the scaling caused by moving points apart in 2D.  Regardless, 
we still found this surprising and undesirable.  We expected 
that a smooth, consistent motion of the fingertips would 
cause an equally smooth and consistent motion of the object.  
However, as noted in [8], this property is not guaranteed to 
be satisfied by Through The Lens techniques.  We discuss 
methods to address both this rotational issue as well as the 
one described the previous paragraph in the next section.

Further experimentation also revealed that large rotations 
sometimes required multiple gestures to complete.  For 
example, when using three fingers to rotate an object by 
180 degrees or more, the contact point in motion necessarily 
became occluded as the object swung around.  Our method 
still supported manipulating the occluded contact point (as 
it still mapped to a valid screen-space location), and despite 
not being visible the contact wasn’t difficult to control.  
However, as it is impossible for one hand to pass through 
another, we had to remove and replace one or more of the 
contacts to complete the desired rotation.  This limitation is 
not shared by [11,7], which support full 360 degree rotation 
with a single motion.

4.2 Emergent Interactions
Upon further use, we observed instances in which a small 
amount of finger motion could produce rotations of up to 180 
degrees.  These interactions were not immediately apparent, 
but rather became evident through use, and once discovered 
were easy to repeat.  As far as we know, the following 
interactions cannot be supported by other manipulators.

For example, we learned to place two fingers from the 
dominant hand on the object and one from the other in a 
triangular configuration.  We then rotated the dominant 
hand so that the three points became nearly collinear.  As 
this happened the object rotated such that all three contacts 
were on a plane oriented 90 degrees away from the camera.  
(Whether the object rotated into or out of the screen 

Figure 3:  A three-finger shear rotate

Figure 2:  Two three-finger rotations

72



depended on its initial orientation plus whether we rotated 
the manipulating hand clockwise or counterclockwise.)  
As shown in Figure 3, the rotation was accompanied by 
a twisting and scaling of the object, the image of which 
resembled a shearing operation.  For this reason, we called 
this type of interaction a shear rotation.

We also found that new viewpoints could be achieved by 
exploiting foreshortening.  As shown in Figure 4, this type 
of operation involved first placing four contact points on 
the object in a configuration that mimics the foreshortening 
at the initial viewpoint.  The object could then easily be 
maneuvered into a new viewpoint by moving the fingers 
to positions which describe the foreshortening at the target 
view.  This interaction could be used to flip an object almost 
180 degrees by changing its viewpoint from one oblique 
perspective from to another.  However, because of the arm 
and wrist motion required, this gesture felt most comfortable 
when used to rotate an object by 90 degrees or less.  For an 
example of this working on a terrain navigation system, see 
Figure 1.

5 ROTATIONAL EXTREMA
As noted in the previous section, rotations including axes 
other than the camera’s Z axis can produce some surprising 
results.  Upon closer examination we found that these are 
caused by rotational extrema - i.e., points in the transform 
space at which screen-space distances are maximized 
with respect to rotational DOF.  As our initial experiences 
informed us, these situations arise frequently during normal 
use.  In this section we explore two major classes of rotational 
extrema problems and offer ways to identify and curb their 
influence. 

5.1 Ambiguous Rotations
These situations occur when the axis of rotation is correct, 
but the object rotates in the opposite direction from what was 
expected.  As described in section 4.1, this usually occurs 
when one contact point is brought closer to the axis defined 
by the other two stationary contacts.  If all three contact 
points are at roughly equal depths, the axis of rotation will 
lie in the camera’s X-Y plane, and the screen-space distance 
between the contacts is at a maximum with respect to the 
angle of rotation about the axis.  Regardless of whether the 
object rotates clockwise or counterclockwise about this axis, 
the points will be brought closer together in screen-space.  
Figure 5 demonstrates such a situation, in which the contact 
points will be matched either by rotating the object away 
from (5.ii) or towards (5.iii) the user.

Without any intervention, it is entirely up to how the 
solver chooses descent directions to decide between the 
two possibilities.  However, by influencing the solver into 

favoring one solution over the other, we can mitigate the 
effects of this type of ambiguity.

5.1.1 Biasing The Solver to Resolve Ambiguities
To mitigate rotational ambiguities with a gradient-based 
solver, one can simply bias the solver by choosing a 
starting point that favors one direction over the other.  A 
small perturbation from a maxima is all that is required for 
many descent-based algorithms to start descending down a 
particular path in the solution space.  In our case this means 
selecting the axis which we would like to rotate counter-
clockwise about, and using a small displacement in this 
direction as our starting point for rotational update DOF 
(e.g., quaternion values qx, qy, and qz.)

For example, in the situation presented in Figure 5, we can 
bias the solver into selecting the solution which rotates the 
cube towards the user by initializing qy to a small negative 
value (such as -10-1) instead of zero.  The solver will then start 
by considering solutions which include a clockwise rotation 
about Y.  As a more complicated example, and one which 
takes the user interaction into account, we may wish to bias 
the solver according to the following rules: moving left on 
the screen most likely indicates a negative rotation about the 
Y-axis; moving to the right is a positive rotation.  Similarly, 
moving upwards and downwards indicates a negative and 
positive rotation about the X-axis, respectively.  (This 
particular choice of biases corresponds roughly to the types 
of rotations that can be done with an Arcball controller.)  We 
can then bias the update to X and/or Y rotational updates by 
perturbing qx and/or qy such that descending the gradient 
from that point will cause the solution to contain the rotation 
we desire.

Note that the perturbation shouldn’t have any adverse behavior 
away from local maxima.  In this case the perturbation will 
either push the DOF towards the local minima or away 
from it.  If the initial position is perturbed towards the local 
minima then the algorithm will converge as normal.  If the 
perturbation is away from the local minima, then because 
we are away from a local maxima, and assuming that the 
perturbation is sufficiently small, we will also converge to 
the same solution.  In this case the solver should descend 
the gradient from the perturbed point past the original pre-
perturbed point, and wind up at the same local minima.

5.1.2 Using Pressure to Resolve Ambiguities
We also experimented with using pressure to correct 
rotational ambiguities.  Pressure provides users with an extra 
half-dimension (i.e., a non-negative value) which can be 
used in addition to the usual 2D motion along the surface 
of a touch-screen.  We thus wished to give users a tool to 

Figure 5:  Illustration of an ambiguous rotation

(i) (ii) (iii)

 Figure 4:  A four-finger perspective rotate
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“push” a contact point further into the screen.  Rotational 
ambiguities can then be resolved by pushing one side of the 
object into the screen when beginning a rotation.

One way pushing can be accomplished is by adding a penalty 
to our energy which tries to influence the solver into moving 
the point in the desired direction in world-space.  The desired 
depth, ztarget, can be determined from the current pressure 
value and the object’s current world-space depth.  We can 
then measure the contact point’s deviation from the target 
depth via the quadratic penalty

λ(ztarget − < z,  M(q)x >)2

in which x is the point to be pushed, z is the unit-length vector 
pointing into the screen, and λ is a weighting coefficient 
used to correct the difference in dimensionality between the 
world-space penalty and the screen-space energy.  λ can be 
viewed as a trade-off factor of how much slippage among the 
contact points we are willing to accept for the point to pushed 
into the screen.  For a more in depth discussion of penalties 
and a suitable choice of value for λ, please see section 7.

5.2 Rotational Exhaustion
Rotation about an axis can also increase the screen-space 
distance between a pair of contact points as they are moved 
apart by the user. However, this distance will eventually be 
maximized with respect to that axis. Referring to Figure 6, 
as point B is dragged to the right, a rotation about camera Y 
will increase the length of vector AB until its screen-space 
length is maximized (6.iii) with respect to that rotation. 
However, it is still possible for three contact points to be 
matched exactly, although the apparent DOF used to perform 
the matching will necessarily have to change.

Most commonly this means engaging a translation in Z (6.iv) 
which brings the object closer to the camera.  However, as 
the object translates forward, the constraints on points A 
and C induce a new rotation roughly about AB, which is 
perceptually perpendicular to the previous axis of rotation.  
We wish to detect the point at which this rapid transition 
happens, and take some appropriate course of action to either 
control or correct the shift in interaction behavior.

5.2.1 Waxing and Waning Interactions
We can gain some insight into the problem by fitting a 
plane to the contact points and examining the path the 

plane’s normal takes during a typical interaction exhibiting 
rotational exhaustion.  Figure 6 (bottom) also depicts the path 
of the normal in the interaction shown.  The normal initially 
starts rotating to become more and more parallel with the 
eye vector, and then takes a sharp turn and quickly becomes 
less and less parallel.  The sharp bend in the normal’s path 
characterizes a rotational exhaustion as the axis of rotation 
quickly changes from the initial axis to another.  Note that 
in general the new axis is not necessarily perpendicular to 
the original, and the normal does not always become exactly 
parallel to the eye vector.  Rotational exhaustion can occur 
from any starting orientation, rotating about any axis, not 
only those axes which lie in the X-Y plane.  Regardless of 
object orientation though, all rotational exhaustions exhibit 
this type of bend in their normal path.

We refer to this phenomena as a waxing/waning interaction.  
When the plane’s normal is becoming more and more 
parallel with the look vector, we say the plane is waxing.  
Similarly, when the plane’s normal is becoming more and 
more orthogonal to the look vector, we say the plane is 
waning.  It can be observed that the rapid shift in rotational 
axis occurs at the transition point from waxing to waning.  
That is, when the plane’s normal is maximally parallel to the 
eye vector, and then starts turning away.  Again, this does not 
necessarily mean that the two vectors are actually parallel, 
but rather that given the constraints set by the contact points, 
they won’t get any more parallel then they are at this point.

To detect when this occurs, we define w(x,q) to be the a 
function which measures the angle point x’s normal makes 
with the eye vector at x given transform parameters q, and 
look for minima in this function with respect to time.  We 
evaluate this function at the centroid of the contact points 
using the normal of the best-fit plane.  Assuming the world-
space eye vector at the centroid can be computed from the 
transform values, and that we have the plane’s normal in 
local-space, this gives us

w(xcentroid ,q) = 1− < eyecentroid ,  M(q)n plane >

Minima in w are simply an indication that the plane’s 
orientation has shifted from waxing to waning, but are not 
sufficient as an indicator of rotational exhaustion.  In Figure 
7, point B is moved in a small orbit, moving first to the right 
(7.ii), and induces a minima in w (7.iii, bottom) as point 
B starts to return toward points A and C. Such changes in 

(i)

A

B

C

Figure 6:  Illustration of an interaction exhibiting rotational exhaustion, and the path of the best-fit plane’s normal
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Figure 7:  Illustration of a waxing/waning interaction which is not a rotational exhaustion
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orientation can be expected when a control point reverses or 
otherwise modifies its current trajectory. The key difference 
in the case of rotational exhaustion (as shown in Fig. 6) is 
that the shift in orientation (and detected minima) occur as B 
is moved along a relatively consistent trajectory.  Thus, we 
impose the additional criterion that each constraint point’s 
trajectory should not deviate too much from a straight line. 

Finally, it may be desirable to require that the change in 
w from a point’s initial position to its current position be 
greater than some minimum threshold.  This essentially 
requires that the surface point must have rotated by more 
than this minimum amount, and should help protect against 
false positives.  Depending on the application, this may 
be important because if a minima in w is detected but the 
total change of w is small, then this likely indicates that the 
interaction started near a minima and thus may not qualify as 
a true rotational exhaustion.

5.2.2 Interaction Correction
Once detected, we experimented with “correcting” the 
interaction by limiting which DOF the minimization is 
allowed to operate upon.  It would seem natural that since 
the interaction happens by exhausting rotational DOF that 
simply constraining all rotational DOF to their current values 
should be sufficient to correct the problem.  Of course, when 
this is employed, the object stops rotating before unexpected 
behavior occurs.  However, without any rotational DOF, no 
further changes to the object’s orientation can be made.  This 
is in stark contrast the types of manipulations which were 
possible immediately before the correction began.

For this reason we further experimented with restricting 
translational DOF instead of rotational ones.  Since 
translation along camera Z is engaged once the original 
rotational component is exhausted, and this translation must 
work hand-in-hand with the new rotation in order for the 
contact points to be matched, restricting translation along 
camera Z seemed to be a viable alternative.  We felt that 
this results in a more natural feel than restricting rotation, 
as the object can still move in subtle ways and many of the 
same manipulations are still possible regardless of whether 
translation along Z is enabled or not.

Finally, we must consider when to re-allow the solver to 
operate in all six DOF again.  Ideally this should happen 
when the screen-space target points return close to their pre-

slippage positions, as this is the most natural location for the 
user to “unwind” to.  Fortunately we already have a means 
by which to measure the total slippage among contact points: 
our energy.  If energy is increasing, it means that slippage is 
among the contact points is increasing as well.  On the other 
hand, if energy is decreasing then the contact points must be 
moving closer towards the points on the object which were 
originally touched.  We can therefore select a reasonable 
threshold that the energy must fall beneath at which point 
the missing DOF are activated again.

6 ERROR DISTRIBUTION
Whenever our camera is overconstrained, such as in the 
presence of greater than three contact points, when we add 
additional terms to our energy, or limit the available DOF 
as described in the previous section, we must necessarily 
incur some error.  In fact, just removing a single DOF (e.g., 
translation along Z) will result in slippage among three or 
more contact points.  Because our energy measures error in 
L2, the error will tend to be distributed as evenly as possible 
among the contact points.  As shown in Figure 8 (i), this 
results in none of the contacts matching their target positions 
exactly.  While this may be sufficient for some applications, 
it is entirely possible that this is not desirable behavior for 
others.

By adding a normalized weighting coefficient to each 
contact point’s terms in our energy, the distribution of error 
among the contact points can be controlled.  This additional 
coefficient simply declares how “important” a particular 
point is relative to the other points, and thus the degree to 
which it will be matched during the optimization.  If ωi is 
the weight of the ith contact, then with weighting coefficients 
included our energy becomes 

E = ω i s(xi ,q) − pi
i
∑

2

ω i = 1
i
∑

The question of how to properly choose a weighting criteria 
still remains.  The answer to this of course is application-

(ii) (iii)(i)

Figure 8:  Three contact-point weighting schemes
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specific.  However, in order to avoid assigning importance 
to the contact points in advance, we believe two general 
guidelines should be that the weights themselves can be 
derived from some measurable property of the interaction, 
as well as can easily be adjusted throughout.  With these 
guidelines in mind, we experimented with four weighting 
criteria to control error distribution when the available DOF 
are limited by applying the rotational exhaustion “correction” 
described in section 5.2.2.

The first two schemes made use of the screen-space distance 
a contact has travelled from its initial position to define 
weights.  Screen-space distances seemed well-suited for this 
purpose as a contact point’s motion may be viewed as an 
indication of the user’s intent.  If a contact point moves quite 
a bit while the others remain relatively fixed, then the point 
in motion may be considered more important than the others, 
and thus should be matched more closely.  If weighting is 
defined in this manner, then when translation along camera 
Z is disabled, the object will translate to follow the dominant 
hand’s fingers across the screen while the non-dominant 
hand’s contacts exert little influence on the object’s motion.  
Thus, this weighting scheme effectively falls back on the 
single-finger translation one would expect from a 4DOF 
RST controller.  This can be seen illustrated in Figure 8 (ii).

An alternative interpretation of using distance to define 
weights is to consider the stationary points more important 
than the ones in motion.  In this case, the contacts of the 
non-dominant hand, which were used to create the rotational 
axis, pin the object down while the dominant hand’s contacts 
are free to roam around the screen.  An example of this is 
shown in Figure 8 (iii).  As a result, the points in motion can 
exert only a small rotational influence on the pinned object, 
and thus this weighting scheme maintains the object’s 
position and orientation at the time the correction is applied 
and translation along Z is disabled.

We also explored the use of pressure to control the spread of 
error.  By defining a contact’s weight in terms of how hard 
a user is pressing against the screen, we give the user a tool 
with which to pin points down.  The harder a user presses at 
a contact relative to how they press at other contact points, 
the harder the solver will try to match that point.  Because 
pressure values are continuous and easily adjusted, it is easy 
to dynamically re-weight contact points on the fly.

One difficulty with using pressure values to control error 
distribution arises from the fact that fingers are not styluses, 
and should not be expected to function in the same manner.  
When pressing a finger hard against a touch-screen and 
moving at the same time, friction may cause the interaction 
to be unpleasant and thus undesirable.  This naturally makes 
pressure more well-suited for making stationary contact 
points sticky rather than trying to more heavily weight points 
in motion.

7 PENALTIES
Depending on the application, one may wish to constrain 
the object’s motion to meet task-specific ends.  Our method 

supports such constraints via quadratic penalties.  Each 
penalty function simply measures deviation from some ideal 
condition.  For example, in an application which allows a 
globe to be spun, one may wish to enforce the condition 
that the globe’s center always remains constant in world-
space.  A penalty representing this would simply measure 
the distance from the globe’s original center and sufficiently 
increase the energy if movement from this position should 
occur.  With penalties included, the most general form of our 
energy can be written as

E = ω i s(xi ,q) − pi
i
∑

2
+ λ j g j (q)2

j
∑

in which gj(q) is the jth penalty function with weight 
coefficient λj.

Penalties are not true, hard constraints in the strictest 
sense.  However, through a careful choice of penalty terms 
one can often achieve the same result.  Since each contact 
point adds exactly two terms to our energy, one and two-
point manipulations will contain fewer terms than the six 
available DOF.  Sophisticated one and two-point interactions 
can thus be created by using penalty terms to constrain the 
remaining DOF without sacrificing the exactness of the 
solution.  Ideally the total number of terms in our energy 
should be close or equal to the number of DOF.  While our 
method doesn’t enforce a limit on the number of terms, the 
presence of large numbers of penalty terms will likely cause 
the interaction to noticeably degrade.

7.1 Weighting Penalties
When our energy is overconstrained (i.e., when the number 
terms in our energy exceed the number of available DOF), 
properly weighting the penalty functions may be required to 
ensure that each penalty continues to function sufficiently 
as a constraint.  Choosing a value for λ to weight a screen-
space penalty essentially informs the solver of the trade-off 
one is willing to accept between violating the penalty and 
the amount of the slippage one will allow the contact points 
to incur.  The weight chosen indicates that a violation of one 
pixel is equivalent to λ pixels of slippage of an unweighted 
contact point, and if λ is large enough the solver should work 
harder to ensure that the penalty only receives an equivalently 
small amount of the error.  Because our energy is quadratic 
in contact point slippage, in practice weighting screen-space 
penalties in the range of 10 to 104 seems to keep the penalty 
violations small and slippage to a minimum.

Choosing a value for λ for world-space penalties can be more 
challenging.  Due to the difference in dimensionality, small 
violations of penalties in world-space are potentially much 
more disastrous than small violations of penalties in screen-
space.  A violation of one-pixel in screen-space may be barely 
noticeable to a user, but a violation of the same magnitude 
in world-space will likely be glaring.  If is therefore crucial 
to weight the penalty so such gross violations cannot 
occur during the minimization.  If an application can only 
tolerate a violation of 10-k in world-space before violations 
become noticeable, one must set λ to be at least 102k.  This 
is equivalent to the max tolerable violation in world-space 
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being about one pixel of error in screen-space.  Furthermore, 
in order for the penalty to carry even more significance than 
slippage among the contact points during the optimization, 
λ must be sufficiently increased beyond the lower bound of 
102k.  In practice a value of λ in the range of 102k+1 to 102k+4 
seems to work well.

Finally, assuming the penalty is not violated at the start 
of the interaction, it is important not to set λ too large and 
overweight the penalty.  If a penalty is overweighted, then 
any movement at all will result in penalty values which dwarf 
error associated with contact point slippage.  As a result, the 
object will simply stop responding to input.

7.2 Penalties In Action
We experimented with a wide array of screen-space and 
world-space penalties.  The following set seemed to be of the 
most value: vector fixed in world-space, point fixed in world-
space, distance between two points fixed in world-space, 
point constrained to plane in world-space, direction between 
points fixed in screen-space, distance between points fixed 
in screen-space.  Since our method presumes the presence 
of functions which project from local-space into both world-
space and screen-space, each of these penalties can be easily 
implemented via dot products and distance computations in 
the appropriate space.

Once we had these penalties implemented, we were able to 
create rich interactions with just a few lines of code in our 
example implementation.  For example, Figure 9 depicts a 
two-point interaction in which a penalty has been added to 
only allow rotation about the first contact point’s normal.  
This single penalty enables two-point rotation about arbitrary 
3D axes. 

Multiple penalties can be used in tandem to produce more 
interesting interactions then a single penalty would allow 
alone.  For instance, penalizing a point’s deviation from 
a plane alone won’t stop the rest of object from orienting 
itself in some arbitrary manner with respect to the plane.  By 

additionally penalizing the rotation of the point’s normal 
and tangent vectors, the object is forced to slide along 
the plane without any twisting.  Figure 10 shows a single 
point interaction in which a cube is constrained to move in 
the plane perpendicular to the contact point’s normal and 
twisting is disallowed.

7.3 Navigation Tasks
If the object under control is much larger than the camera’s 
field of view, then our method can also be applied to 
navigation tasks.  Since the model responds to input in a 
very RST-like manner, users can leverage preexisting multi-
touch experiences to perform new multi-touch tasks, such 
as traversal through virtual environments.  Figure 11 shows 
a user performing RST-like interactions to navigate into a 
complicated model.

For objects which are not free-floating, the addition of some 
simple penalties may be required to ensure the desired 
interaction.  For example, by constraining the center of a 
globe to always remain at the same location in world-space, 
our method can readily be applied to globe navigation.  For 
single-point interactions, we can make the globe rotate 
underneath the user’s fingertip by penalizing changes in the 
distance between the camera and the center of the globe.  
Since the user can then spin the globe with a single finger 
without affecting the camera’s distance to the globe, the 
presence of these two penalties effectively allow our method 
to mimic an Arcball controller.  The interaction still behaves 
correctly at arbitrary camera orientations, such as the one 
shown in Figure 12 (top row).

For terrain navigation interactions involving two or more 
contact points, the distance penalty is dropped.  The user 

Figure 10:  Translation along a plane without twisting

Figure 9:  Rotation constrained about a particular axis

Figure 11:  Traversing through a large model

Figure 12:  Single (top row) and two-point (bottom row) interactions on a terrain navigation system
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can zoom in and out with two fingers, and tilt the globe or 
change perspective with three or more fingers.  Because our 
controller operates in screen-space, our method even permits 
novel terrain interactions, such as pinning one point on the 
surface down to a particular location on screen, and then 
spinning the earth around it.  Figure 12 (bottom row) depicts 
this type of interaction, in which the user has pinned down 
a mountain and spins the world around it.  Notice that the 
position of the mountain does not change on screen.

8 CONCLUSION AND FUTURE WORK
In this paper we have presented a screen-space method 
which allows direct control in 2D and 3D on a multi-touch 
surface.  We suspect that the issues we have explored when 
working via direct manipulation in 3D are sufficiently 
general and apply not just to our particular formulation, 
but to any screen-space 3D direct manipulator.  Despite 
these difficulties, which we believe are mitigable, there 
very likely exist many interesting applications for 3D direct 
manipulators.

There is still much left to do.  We would like to continue 
expanding our understanding of the unexpected phenomena 
which popped up when directly manipulating in 3D.  
This includes exploring ways to make the interactions as 
predictable as possible, with as little intervention as possible.  
We would also like to expand the capabilities of our method.  
The addition of penalties specified by metrics such as the 
speed of the user’s fingers may be useful in guiding the 
optimization into more faithfully capturing the user’s intent.  
Additionally, methods to implement “undo” operations, by 
backtracking through solution space should also be looked 
into.

Finally, we would like to explore integration with 
optimization algorithms which allow hard constraints.  This 
does not mean that we will discard our penalty framework.  
Rather, hard constraints and penalties can work in tandem to 
ensure desired interactions.
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