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Abstract : In order to open the field of autonomous mobile robotics to new applications such as the provision of
assistance to disabled people, the research is being focused upon low-cost solutions. That implies the use of
poor perception systems and low computing power. In such a context, the algorithms used have to be simple, if
they are to be executed in real time, and proof against the weaknesses of the sensing systems. The localisation
approach presented here is based on the fact that the higher the localisation algorithm speed is, the lower the
error in the position and the orientation, due to the odometry. Any systematic errors in the relative localisation
using odometry are corrected on-line by using a limited set of ultrasonic data. If a non-systematic error occurs,
amore complex procedure is necessary.

Both simulation and experimentation show that the systematic odometric errors become bounded, thanks to
those algorithms. Moreover, they are robust to a high rate of false ultrasonic measures.
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localisation estimation, localisation errors.

1. Introduction

Mobile robot displacements require the provision of
correct position and the orientation knowledge by
the localisation function. The classical approach uses
proprioceptive devices, e.g. an odometer, for the
relative localisation, and a more complex
exteroceptive system to periodically correct the
relative localisation. Many authors have studied the
localisation problem in known and structured
environments, and with an advanced but expensive
perception systems, e.g. a laser rangefinder or
camera(s). Therefore new mobile robot applications
will require substantial reductions in the costs
involved.

The application descibed in this paper deals with
medical robotic aids, and isaimed at the provision of
a conveyance and manipulation assistance, for
severdy disabled people (Hoppenot et al, 1996). The
system is composed of a mobile robot which plays
the part of the carrier manipulator arm. The mobile
robot is built around a wheelchair platform that
integrates the computer and perception modules. The
perception system is reduced to an odometer and a
ring of eight ultrasonic range-finders. The computer
system is a multiprocessor architecture.

Odometry solves the relative localisation at low
cost but presents different error sources, that fit into
two categories (Borenstein, 1996):

- Systematic errors, principally due to the
unequal whed diameters, the misalignment of

wheels, and the uncertainty about the contact
between the wheels and the floor.

- Non-systematic errors, due to rough floors and
whesl-dippage.

The localisation strategy distinguishes betwenn
two kinds of errors. The systematic errors are
corrected on-line by a high-speed algorithm, using a
snall set of exteroceptive measures. A
non-systematic error requires a more complex and
more time-consuming procedure to localise the
robot, using a large set of exteroceptive measures.

Among the rangefinders that are currently
available, ultrasonic sensors respect the low cost
congtraint but present several significant sensing
problems. Specular reflection implies that a surface
that is non orthogonal to the direction of acoustic
propagation will not be detectable. Multiple
reflections produce erroneous measures. Such poor
perception systems require algorithms that are proof
against many erroneous measures.

This paper presents robust solutions for the
correction of systematic odometric errors on-line.
Algorithms are applied to a ssimulated then a real
robot.

In Section 2, the general localisation problem is
presented. In Section 3, two algorithms to correct
systematic odometric errors are described. Section 4
gives the experimental conditions. In Section 5, the
simulation results are demonstrated and in Section 6
experimental results are given. Section 7 discusses
these results, and Section 8 concludes this work.
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2. Thelocalisation problem

Much work has been carried out on this sibjed. This
problem is very close to the map-building one, and
most publications deal with bath mapping and
| ocali sation.

Different techniques have been presented in the
literature. In (Crowley, 1989; Krose ¢ al., 1993 a
measured point is associated with an already built
segment if the distance between them is lessthan a
predefined threshold. The environment is built up
during the movement of theroba, and a new paint is
used to locate the position of the segment predsdly.
In (Cox, 1997, the environment is known a priori.
A measure is matched with the dosest known
segment. This approach does not need a sensor
model. The computation is not very complex, and is
undertaken in real time. Another solution consists of
using gids to represent the environment (Elfes,
1986 Elfes, 1990 Matthies and Elfes, 1989. Each
measure naturally matches one cél of the grid. In
(Mandelbaum and Mintz, 1993, the environment is
modelled by segments and a grid. The grid is used
for matching, and each cdl contains information
(e.g. «ocaupied » or « empty ») for use in obstacle
avoidance A pointer to alist of featuresis associated
with each cdl. Higher-level tasks sich as
localisation need more predse information. A
measure belonging to a cdl is diredly matched with
the feature pointed to by that cdl. The drawback of
this method is the large amount of basic information
that isintroduced into the model of the environment.
In (Schiele and Crowley, 1994, another use of bath
segments and grids is based on several local maps
and a global maps. Each map can be represented by
a grid or a set of segments. The main isale is the
matching of one local map againts the global one.
Four cases are encountered: segment-segment,
segment-grid, grid-segment and grid-grid.

According to the papers cited abowe, the
matching problem is one of the more important
isaes in the localisation of mohbile robds. In this
paper, the approach is based on Cox’s (1991) work.
Each measurement is matched with the nearest
segment of the environment. The main interest of
this choice is that the matching is made
independently for each measurement. The problem is
less complex than in the other approaches, and
easier to solve.

In order to resped the low-cost constraint, the
perception system is composed of a ring of eight
ultrasonic sensors. In contrary to the quite accurate
laser measurements used by Cox (1991, ultrasonic
sensors provide many erroneous measurements due
to speaularity, multiple etoes and large solid angles
(Wilkes et al., 1993. This requires an adaptation of
Cox’s (199)) idea. The solution that matches the

measurements with the known environement is
developed in detail in Sedion 3.1.

This matching is made possble only by the
asumption that the odometric aror is not too
important. With reference to (Borenstein, 1996,
there eist two types of odometrical errors.
Non-systematic ones are not predictable. Systematic
errorsincrease over time. So, the higher the speed of
the localisation algorithm is, the higher the
acceptable systematic aror of the odometry. The
solution to the matching problem permits
localisation algorithm to be run in real time (7.3),
which is important in any on-line localisation
problem.

3. ThelLocalisation algorithms

Two algorithms are presented here. The first takes
acoount of only one burst of measurements, that is to
say 7 measurements, one from each sensor (see
Figure4). In the sewond one, a memory effed
covering the 10 last bursts is used, so 70
measurements are avail able.

However, before developing these algorithms, it
is important to explain in detall how to match the
measurements with the known environment.

3.1 The matching solution

This is the main contribution of this paper. The
obedive isto simplify the locali sation algorithms by
matchnig the dead-redoning locali sation against the
points of impact of the measurements. Acoording to
the odometry, the position of the roba is known. For
each measurement, an impact point is calculated,
using this odometric position of the roba. The idea
is then to match the point of impact with the nearest
segment of the known environment.

Cox (199) works with laser measurements.
These are amost perfed, in comparison with
ultrasonic measures. In this paper, not only is the
nearest segment of the environment used, but a
threshold is also defined to rgjed wrong measures
due to speaularity, multiple etoes and large solid
angles.

In fact, two thresholds are used, depending on
the relative positions of the ultrasonic point of
impact and the segment of the environment. Three
aress are defined: Ao, A; and A, (Figure 1). If the
point of impact of the measure isin Ao, a threshold
To isused. In A; and A,, another threshold T, is
defined, small er than T,

The distinction can be eplained as follows. In
Ao, the distance is computed between the impact of
the measurement and the segment of the modell ed
environment, in a diredion perpendicular to the
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segment (see eg. 3 in the following paragraph). This
is consistent with ultrasonic measurements, which
always give the shortest distance to awall. In A; or
A, the distance is computed between the impact and
the closest end of the segment (eg.4) in the
following paragraph. That choice is less consistent
with ultrasonic measurements, but allows a
smoothing of the matching. The thresholding takes
account of the area distinction and filters more
points of impacts in Al or A2 than in AO0. A
compromise is found with Ty=0.25m and
T12=0.05m.

3.2 The pin-point algorithm

3.2.1 Presentation of the algorithm

Position (x,y,0) is given by the odometry.
Distances are measured by the 7 forward sensors in
the ring (Figure4). When the roba moves in a
known environment the best robd postion
minimises the sum of the square measured dstances
to the walls. The function to be minimised is
complex if al the possble roba postions are
considered. Each measurement can be matched with
known walls in the eawvironment. The @mputing
complexity is higher than this algorithm.

Indeed, use of the matching described abowe
simplifies the locali sation algorithms. The odometric
position error must stay less than predefined
threshold (25cm). That leads to the following
algorithm, based on a least-squares one:

1- Measure the seven distances
2- Find the impact
3- Match impact with the environment
4- Compute the gradient of F
5- Compute the global position corredion
6- Estimate the st function F
6-1-if F<g,or gF <g'or n> N goto 7
6-2-else goto 2.
7-if n> N,
- return the original position
-if OF/ox<g' use X corredion
-if OF/ody<e' use y corredion
-if OF/08 <&' use B corredion
8- else usethe global corredion

where F : cost function (eg. 5),
OF : 0F/ox or dF/dy or dF /o6,
N : iteration number,
N : maximum number of iteration.

If the it condition is due to too large a number
of iterations (step 7), the crredion is done in only
the diredions (x,y,8) in which the gradient is less

than a predefined threshold £'.

3.2.2 The cost function

As a least-squares algorithm is used, the st
function must be mntinuoudly derivable.

Let P(x,y,0) be any postion of the robd. Let
M;(%,Y,6) be any impact of ultrasonic sensor
number i, where 6, is the diredion of measurement

in the roba reference (Figure 4). So the @-ordinates
of theimpact i are:

%q =x+dcog6 +6) o

By = y+dsin(6 +6)
where d isthe measured dstance

Let S, supported by the straight line of equation
ax+by+c=0, be the segment matched with M.
Let Sl(xl,yl) and Sz(xz,yz) be the two extremities
of S. Let H(X,,Y;,) bethe orthogonal projedion of
M, on the straight line supporting S, whose -
ordinates are:

é(h =(b2Xi —aby; -ac)/(a2 +b2)

%/h =(a2yi —abx; —bc)/(a2 +b2)
Then F isdefined as foll ows:

().

-if H belongs to S then
(axi +by; +c)2 ) )
Fi=—F———7— (3) which is the squared
(a? +b?)

distance between M and H, corresponding to the
area A defined abowe,

2 2
_ Hxi ‘Xl) +(yi ‘yl)
-else Fj =minQ

) , @
E{Xi ‘Xz) +(Yi ‘Y2)

which is the minimum squared d stance between
M and S and between M and S,, corresponding to

theareas A; and A..

The algorithm requires a continuously derivable
function.

F, is continuous everywhere in x and y,. As X
and y, are ontinuous in X, y and 8, F is
continuous everywherein X, y and 6 .

The derivatives of F, have to be @ntinuous,
spedally between the two parts of the function. The
derivatives of each form of F with regard to x
when H equals S are @lculated. The first form (3)

. oF 2a(ax,- +hy; +c)
gives — =—F——v—

and the seond (4) gives
oX; (a2+b2) 9
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%zz(xi —xl). Now, as H equals S, (2) gives
1
%(1= b2xi —aby; —ac a2 +p?
O
Eylz(azyi — abx; —bc)/(a2 +b2).
so (x —xﬂ:% and F, is derivable
a“+b

everywhere with regard to x;. The derived forms

oF
show that —- is continuous too. The same result
i
Gl
can be demonstrated for —.
i

The final point is to derive F; with regard to X,
y and 6. Now X, and Yy, are antinuously derivable
with regard to X, y and 6 (1). So F is
continuoudly derivable with regardto X, y and 6.

Now, F = zFi . (5).

So F is continuoudly derivable with regard to X,
y and 6.

3.3 Pin-point algorithmwith memory effect

In this algorithm the last ten measurements of the
seven sensors of the ring are memorised in order to
build segment features. Then the segments are
matched with the modell ed environment.

How is one to huild the segments? The first step
is to choose which segment the measure number i
belongs to. For example in (Crowley, 1989 and
(Krose et al., 1993 a new segment is built when
three points are aligned with a certain predefined
tolerance A new point belongs to a segment if the
distanceto it is snaller than a predefined threshold.
In (McKerrow, 1993, an ultrasonic measure is
stored as a circle arc. Two different measurements
come from the same plane if there is a common
tangent to the two arcs. In bah cases the
computation is quite cmplex and time-consuming.

As in the previous method, a sensor
measurement is matched with a segment of the
environment, taking the odometric position into
acoount. When a set of points has been assciated
with the same segment of the evironment, a
segment is computed by using a linear regresson
between these points (Figure 2-a). So two segments
are available: the known one in the modd of the
environment, and the mmputed one. It is very
important to point out that each measured segment
has an asxociated segment in  the known
environment: the matching probem is olved. In this

method segments are represented according to
Crowley' s formalism (Crowley, 1989.

The arredion is performed in two steps. First,
only the orientation is correded (Figure 2-b). Thisis
the sum of the differences between the lculated
segment orientations and the known ones, divided by
the number of segments used. Then the (x.,y)
position is correded (Figure 2-c) by minimising the
sum of the distances between the midde of the
measured segment, and the known segment of the
environment. The same least-squares algorithm is
used a ebove.

4. Experimental conditions

4.1 Environment and robot characteristics

The known environment (Figure 3) is composed
of aroom with a door aperture and a smoath ground
surface The task to be performed is a movement
from the source to a goal, across sib-goals. The
roba, called RMI (French ablreviation for
« Intelli gent Mobile Roba »), isacircular roba with
two drive wheds. The perception system integrates a
ring of eight Polaroid utrasonic sensors (Figure 4)
and an odometric device

A satic kinematic model of the robad is used.

W = Rifw +) /2

The dired modd is: 0O

2= Ri{w -« )/(20E)
where V is the linear spead, Q the angular spedl, R
the radius of the wheds, E the distance between the
two wheds, « the rotation speal of the left whed
and «w the rotation speal of the right whed. The
. o Qq:(V+EQ)/R
inverse modd isgiven by : [ .
Hor=(v-EQ)/R

4.2 Experimental protocol

The agorithms are applied first on a simulated
roba, and then on areal one.

4.2.1 Case of the smulated robot

To compare the localisation algorithms the
experimental protocol performed is:

1- Move the real roba and memorise the
odometric and Utrasonic data.

2- Degrade the odometric data.

3- Smulate roba movements
ultrasonic and modified odometric data.

4- Exeaute the localisation algorithm at each
positi on.

5- Draw the paths foll owed by the real roba, the
modified odometric roba and the modified
odometric roba after the position corredions.

usng real

928



P. Hoppenot, E. Colle: "Real-time localisation of a low-cost mobile roba with poor ultrasonic data’ - IFAC
journal, Control Engineeing practice, val. 6, pp.925934, 1998

4.2.2 Case of thereal robot

The real roba is then used to test the two
algorithms. Asit is difficult to make an over-inflated
tyre, the odometry is degraded when the position is
calculated. The eror is then wel known; so a
comparison between the simulation and experiment
can be establi shed.

In these experimental conditions, the assumption
that the odometer (when not degraded) provides
corred information about the robd postion is
verified.

4.3 Degradation of the dometric data

With reference to (Borenstein, 1996, systematic
errorsare @rreded. A constant bias is applied to the
whed diameter. The deviation taht is taken into
acoount at each iteration ends in complete @mnfusion
of the robd. Two cases have been treated:

- asymmetrical inflation eg. the left tyre is
over-inflated and the other sub-inflated
- symmetrical but incorred inflation
The first case is the more difficult to solve. All
the results are presented for that case.

5. Simulation results

All the simulation results are presented for the same
set of odometric and utrasonic data. Each algorithm
isfirst presented without the disturbing odometry, in
order to show that the crredion does not impair
corred odometric localisation by too much. Then a
degradation is introduced to display the method's
limits. Finally, a table of maximum errors for the x
and y axes allows a comparison between the
different methods to be made.

5.1 Without odometric disturbance in a
completely known environment

Ultrasonic sensors have a wide aperture angle (30
degrees for Polaroid transducers) and a low distance
acauracy, typically 3 centimetres. Therefor, using
them to locali se the robad, even when the odometry
is corred, will introduce an error. That error must
not be too important, and must be empared with the
improvement when the odometry is disturbed.

5.1.1 Algorithmwithout memory

The distance eror goes up to 20 centimetres
(Figure5) after the doorway, because of the
unknown environment. This error at the end of the
trajeadory will be noticed in each case (Figure 6).

e is the localisation error, measured in metres.
This is the difference between the actual trajedory
and the reference tragjedory without odometric

degradation and without relocalisation. t is the run
time of atrajedory. One graduating of the time scale
isabout 0.5s, corresponding to ane mmplete g/cle of
the measurement and locali sation algorithm.

5.1.2 Algorithmwith memory

If the odometry is corred, the localisation
degradation due to the defaults of the ultrasonic
sensors is less than 0.15 metres in a completely
known environment after a 4-metre displacement.

5.2 With a constant odometric disturbance in a
completely known environment.

5.2.1 Algorithmwithout memory

Figure 7 shows the result with a constant error
caused by an 8% sub-inflated whed. DD is the
cumulative eror without corredion, and dD with the
corredion. The eror in the correded trajedory is
not more than T, (25cm) after a 4-metre trip,
whereas the eror of the non-correded trajedory
goes up to 1.8 metres. The aim is not to locate the
roba very predsely, but to avoid becoming lost, so
thisresult is stisfactory (Figure 7). With a constant
9% sub-inflated whed the rredive action is
insufficient. Until the thirtieth step the corredion is
good. However, if the eror is over 20 centimetres,
the matching algorithm no longer works, so there is
no further locali sation and the eror increases.

5.2.2 Algorithmwith memory

Using the memory method, an 11% disturbance
can be wrreded in the worst case. The mrreded
trgedory follows the reference one (traedory
without odometrical degradation) quite well
(Figure 8).

5.3 Without odometric disturbance in a
partially known environment. Algorithm with
memory.

In the next experiment, the ewvironment is
composed of the same room and an unknown
obstacle. That poses a matching problem between
measurements and known modell ed segments of the
environment. Matching conditions are less ¢rict
than previoudy, to permit a sufficient number of
measurements to be used. Results are presented only
for the algorithm with memory because of its better
robustness to uncorred ultrasonic measures. Up to
50% (Figure 9) of them are unusable.

5.4 With a constant odometric degradation in a
partially known environment.

The same degradation percentage as in a completely
known environment cannot be reached. The obstacle
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ocdudes me
environment.

The best result that can be obtained is a
corredion of a 4.5% degradation in the worst case
(Figure 11).

important segments in the

5.5 Discussion

Only the worst case is presented here. It corresponds
to an asymmetrical inflation of the tyres, which
induces localisation errorsin X, y and 6 .

The pin-point method with a memory effed
presents the posshility of adjusting dfferent
parameters. It is posshle, for example, to adjust the
depth of memory, the assciation distance the
maximum angle of measurements and the
localisation corredion rate. Thanks to that
adjustment ability, the same algorithm operates in
bah known and pertiadly known worlds. The
dynamic modification of the parameters can be
driven by the rate of recognition of the environment.

6. Experimental results

The algorithm with a memory effed is evaluated in
real situations: first in the same ndition as e
previously (Figure3) then in a more complex
environment.

6.1 With a constant odometric degradation in a
totally known environment.

In the worst case, a corredion of a 9% degradation is
performed (Figure 12). It is a little less than the
simulation results, but not by too much.

The line alled the real distance is the distance
between the real position of the roba and the
reference position (trajedory without odometric
degradation). Indeed, the computed position is not
the real position of the roba, and it is interesting to
compare them.

6.2 With a partially known environment.

The same 4.5% degradation (as in the simulation
results) can be correded (Figure 13).

6.3 Case of a more complex environment

It isinteresting to seehow this algorithm works in a
more @mmplex environment (Figure 14). This is a
room with three wpboards, a spedal furniture unit
in the top right-hand corner and an unmodell ed area
composed of tables and chairs.

Several trajedories have been performed. As a
summary, the locali sation algorithm works well for a
3% odometric degradation. The maximum error at

the end is lessthan 25cm in x and y, and 15 in 6
after a 15metre trip. Abowe this level, wrong
localisations appear eg. with a 4% odometric
degradation, the robd gets lost twicein 11 dfferent
trajedories.

6.4 Discussion.

Those results with a real roba show that the
simulation conditions were near enough to the
reality.

The results are presented only for the second
algorithm. That choice was guided by the posshle
adjustment of that method (5.5), and the robustness
to the high rate of wrong utrasonic measures.

7. Discussion

7.1 Comparison of the algorithms

Table 1 presents the mmparative results of the two
algorithms, in simulation and in reality. Generaly,
the authors estimate a real odometrical error at
around a few percent on a smoath surface

€] )] ©)]

without 8% 11% 9%
obstacles

with 3% 4.5% 4.5%
obstacles

Table 1: Acceptable odometric error.

In the table, the colums represent:

(1) pin-point  algorithm  without memory,
simulation ;

(2) pin-point  algorithm  with  memory,
simulation ;

(3) pin-point algorithm with memory, red
results.

The method with memory is better than that
without memory, and also presents a larger margin
of evolution.

7.2 Room occupied by an obstacle

Figure 16 shows the evolution rate of the roba
vison fiedld masked by the obstacle in the
environment of Figure 17. It explains the drop in the
algorithm’s performance Indeed, at the beginning,
the obstacle is just in front of the roba, so the wall
behind it is not seen. At the end, the obstacle is no
longer in therobad’sfield of vision.

Figure 16 shows change in the field of vision of
the roba, masked by the obstacle. This ratio, in fact
ao/a;, where ao is defined in Figure 17 and

=11 corresponds to the fact that the sensors are
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fixed on the front semi circle of the roba. This
evolution (Figure 16) is presented for a tragjedory
without odometic aror.

7.3 Real-time mnsiderations

With regard to real time, the timing of the algorithm
is at least 10 times less than the sensors
data-acquisition timing which is about 0.5s on a
16 MHz Intel 80196microcontrollor. In fact, most of
thetimeis used by the time of flight of the ultrasonic
wave. More predsdy, the mean time of the
algorithm without memory is 2.5 ms, whereas the
mean time of the algorithm with memory is 50 ms
on a 133Mhz pentium PC. In the second caseg, it is
interesting to point out that 10% of the time is used
for the matching operation, 70% for the linear
regresson calculation to huild up the alculated
segments, and 20% for the locali sation computation.
So 90% of the time is required by the leastsquares
algorithm (which is used in bah the linear
regresson and the localisation computation). The
am of this work was to show that this kind of
matching gves interesting results.

8. conclusion

Generally, knowledge of the position and orientation
of a mohile robd uses two functions, known as
relative and absolute localisation. The former is
looked after by the odometry, and is smple and
inexpensive. Its disadvantage is an unbounded
accumulation of errors. The latter requires a more
complex system, based on a laser range-finder
and/or camera(s) to corred the odometry from time
totime.

With a poor perception system, the strategy must
be different, and must take acoount of the categories
of odometric erors.

In the approach described in this paper, a
real-time agorithm limits the accumulation of
systematic erors by using a limited set of ultrasonic
measuremants. The @ll to absolute |ocali sation is no
longer necessry unless if a non-systematic eror
ocaurs. In that case a more mmplex procedure,
based on a large set of ultrasonic measurements is
required. That procedure is now under consideration.

The algorithm is able to corred a 9% systematic
error in a known environment, and a 4.5% error in a
partially known one. In the latter case, the obstacle
can mask up to 40% of the roba’s field of vision.
These values have to be @mpared to the 2 to 3%
error attributed to the odometry in the literature for
an indoor environment.

Furthr more, the algorithms present a high
insengitivity to erroneous and inacaurate ultrasonic
measures. The rate of false measurements due to

speaularity, multiple etoes and the large solid angle
can reache up to 50%.

At this gage the approach does not take acoount
of the inadequate knowledge of the orientation
position, or of the position of the roba at the
commencement of the task.

The addition of the dfed of memory to the pin-
point method gves the ability to adjust the
parameters of the algorithm dynamically to the type
of environment.

9. References

BorensteinJ. (1996 : «Measurement  and
corredion d systematic odametry arors in
mobile robas » - IEEE Trans on Rob andAuto,
vol. 12, N°6, pp86988Q

CoxJ. (199): «Blanche- an experiment in
guidarnceand navigation d an attonamous roba
vehicle” - IEEE Trans on Rob and Aut, vol 7,
n°2.

CrowleyJ.L. (1989 : « World modeling and paition
estimation for a mobile roba using utrasondc
rangng»- IEEE Int. Conf. on Robaics and
Automation.

Schiele B. andCrowdey J.L. (1994 : « A comparison
of position estimation techniques using
occuparcy grids»- IEEE Internationd
Conference on Robaics and Automation, San
Diego.

ElfesA. (1986 : «A sona-based mappng and
navigation system»- |EEE Internationd
conference on robaics and auomation.

ElfesA. (1990 : «Occuparcy grids: a stochastic
spatial  representation for active roba
perception»- |IEEE Proc 6th Conf on
Uncertainty in Al.

MatthiesL. and ElfesA. (1989 : «Integration d
sonar and stereo range data using a gid-based
representation » - |IEEE Int Conf on Rob and
Aut, pp 727733

Hoppenot P., Benreguieg M., Maaref H., Colle E.
and BarretC.: «Control of a medical aid
mobile roba based on a fuzz navigation» -
IEEE Symposium on Robatics and Cybernetics,
july 1996

Krose B.J.A., Compagrer K.M. and Groen F.C.A
(1993 : «Accurate estimation d environment
parameters from ultrasonic data » - Robaics and
Autonamous g/stems 11, 221-230.

MandelbaumR. and M Mintz (1993 : «Active
sensor fusion for mobile roba exploration and

931



P. Hoppenot, E. Colle: "Real-time localisation of a low-cost mobile robot with poor ultrasonic data’ - IFAC

journal, Control Engineering practice, vol. 6, pp.925-934, 1998.

navigation » - 130 SPIE vol 2059, sensor fusion
VI,

Mc KerrowP.J. (1993): «Echolocation- from
range to outline segments» - Robotics and
Autonomous systems 11, 205-211, El Sevier.

Wilkes D., G. Dudek and M. Jenkin (1993) : « Multi-
transducer sonar interpretation»- IEEE Int.
Conf. on Rabotics and Automation, pp 392-397.

932



P. Hoppenot, E. Colle: "Real-time localisation of a low-cost mobile robot with poor ultrasonic data’ - IFAC
journal, Control Engineering practice, vol. 6, pp.925-934, 1998.

: : Area2
Areal X-Areal x

Figure 1. Three areas defined for a segment.

XX

@

)

cr
o |
c

(b)
X

(©

Figure 2 : Position correction.

< 4m >

e T T o N o o A

Say j

N
Gl
3

Sgur_cg__ Subgoal
T

N

[ T P T T e

B s A A A A A Y A e

D occuped space Goal

Figure 3 : Planned path.

usy,
USg
Us;
Back USa YSe Forward
USIi
c
Y%

Figure 4 : Layout of the ultrasonic sensors.
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Figure5: Error evolution without odometric
degradation. Case of pin-point algorithm without
memory.
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Figure 6 : Error evolution without odometric

degradation. Case of pin-point algorithmwith
memory.
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Figure 7 : Error evolution with an 8% odometric
degradation. Case of pin-point algorithm without
memory.
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Figure 8 : Error evolution with an 11%
odometric degradation. Case of pin-point algorithm

with memory.
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Figure 9 : Rabot trajectory without disturbance
in a partially known environment.

1 11 21

31 41 51 61
e: localisation error (m) t:time
Figure 10 : Error evaluation without odometric

degradation in a partially known environment. Case
of pin-point algorithmwith memory.
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Figure 11 : Error evaluation with a 4.5%
odometric degradation in a partially known
environment. Case of pin-point algorithmwith
memory.
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Figure 12 : Error evaluation with a 9%
odometric degradation.
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Figure 13 : Real robot trajectory with a 4.5%
odometric degradation.
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Figure 14 : More complex environment.
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Figure 15 : Trajectory in a complex environment.
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Figure 16 : Percentage of obstacle masking.

Figure 17 : Definition of the angular masking of the

environment by an obstacle.
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Figure 1. Three areas defined for a segment.
Figure 2 : Position correction.

Figure 3 : Planned path.

Figure 4 : Layout of the ultrasonic sensors.

Figure5: Error evolution without odometric
degradation. Case of pin-point algorithm
without memory.

Figure6: Error evolution without odometric
degradation. Case of pin-point algorithm
with memory.

Figure7: Error evolution with an 8% odometric
degradation. Case of pin-point algorithm
without memory.

Figure8: Error evolution with an 11% odometric
degradation. Case of pin-point algorithm
with memory.

Figure 9 : Robot trajectory without disturbance in a
partially known environment.

Figure10: Error evaluation without odometric
degradation in a partially known
environment. Case of pin-point algorithm
with memory.

Figure 11 : Error evaluation with a 4.5% odometric
degradation in a partially known
environment. Case of pin-point algorithm
with memory.

Figure 12 : Error evaluation with a 9% odometric
degradation.

Figure13: Real robot trajectory with a 4.5%
odometric degradation.

Figure 14 : More complex environment.
Figure 15 : Trajectory in a complex environment.
Figure 16 : Percentage of obstacle masking.

Figure 17 : Definition of the angular masking of the
environment by an obstacle.
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